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ABSTRACT 

 
Uniform sampling is the predominant sampling method for surface measuring instruments. However, 
measurement for structured surfaces brings an increasingly serious conflict between sampling range and 
small resolution. A flexible sampling design based on sufficient previous knowledge of the surface ingredient 
is a potential solution. Adaptive sampling techniques are such strategies. In this paper basic specifications 
and drawbacks of uniform sampling schemes were issued. As potential solutions, some advanced adaptive 
sampling methods e.g. sequential stopping sampling, optimal model-based strategies and adaptive 
allocation strategies etc which were raised from computer graphics, CAD/CAM and CMM measurement are 
surveyed. However, transplanting of these strategies to surface metrology instruments is still questionable. 
Two basic questions are raised at the end. 
 
Keywords structured surfaces, advanced adaptive sampling, uniform sampling 
 

1     INTRODUCTION 
 
Sampling is an inconspicuous part in surface metrology. However, measurement for structured surfaces 
brings an increasingly serious conflict between sampling range and small resolution which are calling for 
advanced sampling techniques. In statistics, there are many sampling methods: random sampling, 
systematic (uniform) sampling, stratified sampling, cluster sampling & multi-stage sampling, and adaptive 
sampling etc. For populations that are rare, unevenly distributed, hidden, or hard to reach, conventional 
sampling designs such as simple random sampling or uniform sampling lead to estimates with high 
variances and potential biases (Thompson 1997). On the contrary, with sufficient previous knowledge of the 
surface, sampling precision and efficiency can be improved. The adaptive sampling is such a strategy. 
 
Sampling is the essential process in conversion from a real continuous surface to its discrete digital form; the 
sampling should allow finite point data to reconstruct the original continuous surface with no or little infidelity. 
But different from a conventional time signal, a space signal is probably a multivalued function of space 
distance which indicates its discontinuity or re-entrance (Figure 1). In surface metrology, the sampling 
scheme or strategy require a wide degree of flexibility in estimating parameters as well. Structured surfaces 
(Evans and Bryan 1999) are the surfaces with a deterministic pattern of usually high aspect ratio with 
geometric features designed to give a specific function. Unevenness of the surface integrity is the typical 
property of a structured surface. 
 
Sampling for a surface is an interesting topic that can be traced back to 1970s. Influence and feasibility of 
different sampling grids and sampling conditions (e.g. sampling interval, sampling size and sampling area) 
for stochastic surface were argued (Tsukada and Sasajima 1982; Lin, Stout et al. 1991; Stout, Sullivan et al. 
1993). From 1990s, freeform surfaces (e.g. vehicle exterior shape) raised. Uniform sampling asks for huge 
data storage and long time of process. And the interpolation errors in complex regions are remarkable. Novel 
sampling techniques of coordinate machine (CMM) measurement were investigated (Elkott, Elmaraghy et al. 
2002; Hu, Li et al. 2004). The advanced sampling design based previous knowledge of the surface 
ingredient exhibited its flexibility and efficiency. In this century, with the development of structured surfaces, 
conventional surface measurement instruments like stylus, interferometers, SPMs, etc are employed for 
inspection. However, the similar problem as in freeform measurement is encountered. Large sampling range 
and small resolution for key areas like edges, steps are in need. Conflict between sampling accuracy and 
sampling range is prominent.  
Adaptive sampling is a new sampling design that can redirect sampling effort during a survey in response to 
the observed values (Thompson, Seber et al. 1996). In surface measurement, the observed values (or the 
previous knowledge) can be a preliminary measurement or its CAD models. In the past, advanced adaptive 
sampling techniques were developed in which systematic design, stratification or cluster process etc was 
combined. They include optimal model-based strategies, sequential stopping methods, adaptive allocation 
design, etc. This paper is set down to survey the potential sampling techniques currently developed in 
surface instruments and other fields like CMM measurement, CAD/CAM and computer graphics etc, by 
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which novel sampling methods could be inspired for structured surface measurement. Disadvantages of 
uniform sampling and advantages of adaptive sampling were issued.  
 

2 UNIFORM SAMPLING SCHEMES 
 
Uniform sampling is the dominant sampling strategy in surface metrology which is utilized in almost all the 
available instruments. Uniform sampling, or referred to as systematic sampling, relies on arranging the target 
population according to some ordering scheme and then selecting elements at regular intervals through that 
ordered list. All ‘units’ in the population have the same probability of selection thus it is a type of “equal 
probability sampling” (Wikipedia 2009).  
 
In Whitehouse’s work in 1980s, mathematical rationality of uniform sampling by 3-points (for one-dimensional 
sampling, , 4-points, 5-points, and 7-points schemes (Figure 2) were analyzed (Whitehouse and Phillips 
1985; Li, Phillips et al. 1989). The advantage of using hexagonal sampling scheme (7-points) is less 
consuming of computational time. And It was pointed that theoretically the 7-points sampling scheme is a 
more robust digital procedure by Nayak’s equations (Nayak 1971), because this scheme is closer to the real 
continuous situation in mathematical calculation of summits density, etc. However, It was pointed by Preston 
(Preston, Duff et al. 1979) that there is a reluctance in using anything other than a rectangular sampling 
scheme (5-points) because it is perceptually more satisfactory for humans to observe straight vertical 
features on a square grid pattern. Transformation of the rectangular grid (5-points) from 1D to 2D is more 
natural. A usual example is that of the fast Fourier transform (FFT). It is very simple to progress from a 1D 
FFT to a 2D FFT simply by taking all the rows in turn and then the columns. Thus it is understandable why 
the 5-points grid sampling scheme is the popular approach currently. All the current 3D instruments use this 
method (Stout, Blunt et al. 2000). 
 
Unfortunately, uniform sampling is proved inefficient if both high precision and large range are required, 
especially when the high precision is locally specified. Considering a structured surface (e.g. a micro-fluidic 
surface) which has a 100mm sample range and 10um slope width in a groove, a full precision uniform 
sampling would call for unacceptable mass data storage and acquisition time. And interpolation errors in 
complex area would be remarkable. Smart sampling methods are in need. 
 

3 ADVANCED ADAPTIVE SAMPLING METHODS 
 

With sufficient previous knowledge of the surface, sampling precision and efficiency can be improved. The 
adaptive sampling is such a strategy. Plenty of advanced sampling strategies have been proposed in the 
past, especially in the last 20 years. Systematic design, stratification and adaptive sampling etc were 
combined that some advanced adaptive sampling methods were developed. These advanced techniques 
are classified into three types: optimal model-based strategies, sequential stopping sampling and adaptive 
allocation (or named as adaptive stratified sampling). Different advanced sampling methods derive from 
different application areas, like visual optimization, engineering measurement, and environment (ocean, 
atmosphere, electromagnetic waves, etc) inspection. A primary survey on the advanced sampling techniques 
is elaborated as below, and examples are listed in Table 1. 
 
3.1 OPTIMAL MODEL−BASED SAMPLING  
In CAD/CAM, geometric modeling, and computer vision techniques, adaptive sampling was introduced first 
for obtaining an effective sampling size and reconstruction accuracy. And some of them were proposed 
mainly for perfect visual or measuring representation. Many scientists from different fields contributed here. 
Two branches – iterative algorithm and features stratification algorithm – compose the category.  
 
The iterative method generally obey the following strategy (de Figueiredo 1995): 

1. Choose a criterion for refining samples; 
2. Evaluate the criterion on the interval; 
3. If the curve is almost flat in the interval, the sample is given by its two extremes; 
4. Otherwise, divide the interval into parts and recursively sample the two parts. 

 
As for the feature stratification algorithm, specific surface feature (e.g. surface curvature, gradient, depth, 
intensity, etc) in each quadrant were ranked. And the sampling grids or points were allocated according to 
the ranking of the surface feature(s). Its algorithm is simple than the iterative method, while the control of 
presentation accuracy isn’t easy. 
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Many examples in computer graphics(Terzopoulos and Vasilescu 1991; Li 1995) and CMM measurement 
(Cho and Kim 1995; ElKott and Veldhuis 2005) were listed in the Table 1. An typical optimal model based 
sampling was inspired by the ‘spring-mass system’(Terzopoulos and Vasilescu 1991). Like a level system as 
illustrated in Figure 3 (left), that the heavier weight M1 shares the shorter part of the level, and vice versa. An 
iterative algorithm by calculating the spring tension, resistance and the speed, acceleration of each mass 
and spring were implemented until the system become stable. Thus the area with high mean curvature or 
other feature attributes was sampled densely. Figure 3 (middle & right) Adaptive sampling in visual process 
(illustrated a sample of adaptive sampling strategy which is based on the cross ‘mass-spring system’.  
 
If the CAD model of a given surface is known in advance, an optimal adaptive sampling design can be 
extracted. However, the theoretically optimal strategies are not necessarily the most practical because they 
may require an unattainable amount of previous information about the population and tend to be 
computationally and implementationally complex (Solomon and Zacks 1970).  
 
3.2 SEQUENTIAL STOPPING SAMPLING 
Most of the time in surface measurement the CAD model is unknown in advance. An adaptive method 
named as sequential stopping sampling was paralleling. With sequential stopping sampling, sampling 
continues sequentially until a given criterion, based for example on observed incidence or sample variance, 
is attained. In sequential sampling instruments like stylus, scanning probe microscopes (SPMs) and CMMs, 
the adaptive sampling method is promising. 
 
An typical example was the equal arc-length sequential adaptive sampling strategy which was proposed by 
Hu et al (Hu, Li et al. 2004). By this method, tangent in each sampling sequential sampling point of a cubic 
spline curve is extrapolated. Step-length was adjusted adaptively according to the slope variation of the 
sample curve with arc-length maintained to be constant. Thus the small slope region is sampled sparsely 
while the large slope region is sampled densely. Figure 4 illustrated the algorithm. 
 
3.3 ADAPTIVE ALLOCATION 
As for surface interferometers (e.g. the coherence correlation interferometer), surface sampling is not 
sequential. Considering a multi-scale measurement, lens switching would be a solution inevitably. The 
adaptive allocation sampling design (adaptive stratified sampling) would be a promising solution. With 
adaptive allocation designs, an initial stratified sample is selected. Based on the observed values for the 
initially selected units, an additional stratified sample is selected with allocation of sample sizes to strata 
based on the initial observations. For example, a given surface is initially measured and stratified. Additional 
samplings are implemented in each interesting regions with allocation of proper sample size to the strata.  
 
A typical example named as hypercube stratified ‘smart’ sampling is inspired by adaptive sampling for 
wireless sensor network proposed by Willett et al (Willett, Martin et al. 2004; Castro, Haupt et al. 2006). 
Three steps comprised the ‘smart’ sampling technique (Figure 5): 

1. Preliminarily (coarsely) sampling uniformly over the domain of function; 
2. Recursively divide the domain into hypercubes, and prune to adapt to the data 

a) Divide the original area into hypercube; 
b) Curvature detect of the curvatures of sub-areas with a specific threshold; 
c) If the curvature exceeds the threshold, return to the step (a) unless an acceptable size is 

obtained; 
3. Uniformly sampling (finely) in each cell of pruned partition to form final estimate. 

The smart sampling method is an effective approach that can be used in non-raster scanning measurement 
e.g. vertical scanning interferometers (VSI) etc. 
 

4 SUMMARIES 
 
Different structured surfaces (e.g. rotational symmetric patterns, tessellations) and stochastic surfaces ask 
for different sampling specifications. 5-points uniform sampling scheme is the dominant sampling methods in 
current surface instruments. However it is proved inefficient if both high precision and large range are 
required, especially when the high precision is locally specified. 
 
Basically the optimal model-based sampling is useful when the CAD model of the given surface is known in 
advance. Algorithms for extracting an adaptive sampling mesh would be complex and time consuming. And 
some of the methods (e.g. visual sampling as in Figure 3) are difficult to be used in surface instruments 
because of the sampling mechanism (e.g. raster scanning). The sequential CMM measurement based 
methods could be utilized in stylus instruments and SPM etc, while the adaptive allocation strategy could be 
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utilized in surface interferometers. If the adaptive sampling techniques are adopted, however, many technical 
details are questionable and have to be confirmed in the future. Two basic questions are firstly raised: 
 

1. Multi-scaling of sampling points is the inevitable result of adaptive sampling methods. Then how to 
do data fusion (fusion of different measuring references, data structure and presentation, etc) of 
multi-scale sampling points? 

2. How to do numerical process (e.g. numerical convolution, Fourier transform, etc) of multi-scale data 
F(x) of a profile/surface with a specific filtering function G(x) in Figure 6. 
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Optimal model-
based sampling 

Visual sampling, 
CAD/CAM 

1. Iterative adaptive mesh sampling based on ‘mass-spring system’ 
(Terzopoulos and Vasilescu 1991) 
2. Iterative adaptive mesh sampling based on surface curvedness (Li 1995) 

CMM measurement 1. Multiscale adaptive grid sampling based on two stage local curvature 
detect (Cho and Kim 1995)  
2. Iterative adaptive sampling for NURBS CAD model based on iso-
parametric curve (Ainsworth, Ristic et al. 2000) 
3. Adaptive sampling for NURBS CAD model based on patch size or 
Gaussian curvedness, etc (Elkott, Elmaraghy et al. 2002) 
4. Iterative adaptive sampling based on NURBS CAD model and deviation 
function or mean curvature change (ElKott and Veldhuis 2005) 

Sequential stopping 
sampling 

CMM measurement 1. Iterative adaptive sampling based on CAD & preliminary normal 
measurement and ‘error space’ interpolation (Edgeworth and Wilhelm 1999) 
2. Equal arc-length sequential adaptive sampling based on previous 
measurement and curve tangent extrapolation (Hu, Li et al. 2004) 

Adaptive allocation Wireless sensor 
network 

Multiscale adaptive grid sampling based two/multi stage feature dectect for 
clustering (Willett, Martin et al. 2004; Castro, Haupt et al. 2006) 

Table 1 Adaptive sampling strategies applied in different areas 

 
 

Figure 1 Difference between real time signal and space signal 

    
(a)     (b)      (c)     (d) 

Figure 2 three-points, four-points, five-points and seven-points uniform sampling schemes illustration (Whitehouse and Phillips 1985) 

         
Figure 3 Adaptive sampling in visual process (left) the level system (middle & right) original image &adaptive sampling mesh 

(Terzopoulos and Vasilescu 1991) 
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Figure 4 Equal arc length sampling (a) extrapolation of arc length S and the step length ∆x from the sequential sampling points Pi-2, Pi-

1, and Pi (b) a uniform sampling mesh (c) the equal arc length sampling mesh (Hu, Li et al. 2004) 

 
Figure 5 Illustration of the hypercube stratified ‘smart’ sampling (a) uniform initial sampling; (b) and (c) behaving the recursively dividing 

process for hypercubes generation; (d) represent of the final sampling points 

 

Figure 6 Two (multi)− scale signal F(x) and the convolution function G(x) (the red dots are larger scaled sampling points, while the blue 
dots are finer scaled sampling points)  
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