
University of Huddersfield Repository

Salahat, Mohammed Hasan

Information Systems Development through an Integrated Framework

Original Citation

Salahat, Mohammed Hasan (2016) Information Systems Development through an Integrated
Framework. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34432/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

INFORMATION SYSTEMS DEVELOPMENT
THROUGH AN INTEGRATED FRAMEWORK

MOHAMMED HASAN SALAHAT

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

School of Computing and Engineering

University of Huddersfield

Huddersfield, United Kingdom

December, 2016

2

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Huddersfield the right to use such copyright for any administrative,

promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and

tables (“Reproductions”), which may be described in this thesis, may not be

owned by the author and may be owned by third parties. Such Intellectual

Property Rights and Reproductions cannot and must not be made available for

use without the prior written permission of the owner(s) of the relevant

Intellectual Property Rights and/or Reproductions

3

PUBLICATIONS

1-Salahat, M. and S. Wade (2016). “Domain Driven Design vs Soft Domain Driven Design

Frameworks”. International Journal of Computer, Electrical, Automation, Control and

Information Engineering Vol: 10, No: 7, 2016.

2-Salahat, M. and S. Wade (2015). "Business Domain Modelling Using an Integrated

Framework". International Journal of Social, Behavioural, Educational, Economic, Business

and Industrial Engineering Vol: 9, No:6, 2015.

3-Salahat, M. and S. Wade (2014). "Teaching Information Systems Development through

an Integrated Framework. UKAIS2014 Conference, Oxford University, Oxford.

4-Salahat, M. and S. Wade (2012). Pedagogical Evaluation of a Systemic Soft Domain-

Driven Design Framework. The UKAIS International Conference on Information Systems

2012 Proceedings, AIS.

5-Wade, S., et al. (2012). "A Scaffolded Approach to Teaching Information Systems

Design." Innovation in Teaching and Learning in Information and Computer Sciences 11(1):

56-70.

6-Salahat, M. and S. Wade (2009). A Systems Thinking Approach to Domain-Driven Design.

UK Academy for Information Systems Conference Proceedings 2009.

7-Salahat, M., et al. (2009). "The Application of A systemic Soft Domain Driven Design

Framework". International Science Index, International Journal of Computer, Electrical,

Automation, Control and Information Engineering Vol:3, No:9, 2009

8-Salahat, M., et al. (2008). A systemic framework for business process modelling and

implementation. Innovations in Information Technology, 2008. IIT 2008. International

Conference on, IEEE.

9-PhD Consortium presentation in UKAIS09, Oxford University, Oxford, UK, 2009.

10-Salahat, M. (2008) A systemic framework combing soft and hard systems development

techniques for BPM and Implementation. Poster displayed in the Annual Researchers'

Conference 2008, University of Huddersfield, UK.

4

Abstract
Information systems are essential entities for several organizations who strive to

successfully run their business operations. One of the major problems faced by the

organizations is that many of these information systems fail, and thus the organizations do

not achieve their required targets in time. Many of the reasons for the information system

failures documented in the literature are related to development methodologies or

frameworks that are unable to handle both ‘hard’ and ‘soft’ system aspects. In general, the

hard issues of the system are considered more significant than the soft issues, however, all

the methodologies must be able to deal with all the system and business aspects.

This thesis investigates the possibility of developing and evaluating a multimethodology

framework that can be used for information systems development in an academic and

business environment. The research explores the applicability of such a framework that

comprehends both ‘soft’ and ‘hard’ system aspects in order to eliminate information system

failures. Different software development approaches are investigated, including the

dominant ‘domain-driven design’ (DDD) approach.

A new multimethodological framework entitled ‘Systemic Soft Domain Driven Design’

(SSDDDF) has been developed by combining ‘soft system methodology’ as a guiding

methodology, ‘unified modelling language’ as a business domain modelling approach, and a

domain-driven design implementation pattern. This framework is intended as an

improvement of the DDD approach. Soft and hard techniques are integrated through

mapping from the ‘consensus primary task model’ of the soft approach to the ‘use cases’ of

the hard approach. In addition, ‘soft language’ is introduced as a complement to DDD’s

‘ubiquitous language’, for facilitating the communication between the different stakeholders

of a project. The implementation pattern (e.g., Naked Objects) is included for generating

code from domain models.

The framework has been evaluated as an information systems development approach

through different undergraduate and postgraduate projects. Feedback from the developers

has been positive and encouraging for further improvements in the future. The SSDDD

framework has also been compared to different ISD methodologies and frameworks among

of these DDD as an approach to ISD. The results of this comparison show that SSDDDF has

advantages over DDD and significant improvements to DDD have been achieved.

5

Finally, the research suggests an agenda for further improvements of the framework, while

suggesting the development of different pattern languages.

6

Table of Contents

PUBLICATIONS ... 3

Abstract ... 4

Table of Contents ... 6

List of Tables ... 14

List of Figures ... 17

List of Appendices .. 23

Acknowledgements ... 24

Chapter 1: Introduction.. 25

1.1 Background and Motivation .. 25

1.2 Business Domain Modelling and Implementation .. 29

1.2.1 Domain-Driven Design ... 29

1.2.2 Hard Approaches ... 30

1.2.3 Soft Systems Methodology ... 31

1.2.4 Soft and hard aspects in software design and development .. 32

1.2.5 Combining SSM and UML ... 32

1.3 Research Aims and Objectives .. 34

1.4 Contributions ... 35

7

1.5 Thesis Outline ... 36

1.6 Conceptualization of the Thesis .. 37

Chapter 2: The Research Context (Literature Review and selected ISD Tools) 39

Part 1: Literature Review .. 39

2.1 Introduction ... 39

2.2 Introduction to Information Systems ... 39

2.2.1 Information System Failures ... 40

2.3 Business Processes .. 43

2.3.1 Business Process Framework .. 44

2.4 Business Domain ... 47

2.4.1 Business Domain Modelling ... 47

2.5 Information Systems Development Methodologies and Tools ... 48

2.5.1 Definition of method and methodologies .. 48

2.5.2 Definition of information system development methodology .. 49

2.5.3 Hard Problems vs Soft Problems .. 50

2.5.4 Hard system development methodologies ... 52

2.5.5 Integrating SSM and UML .. 61

2.6 Gaps in Knowledge in the Literature .. 74

Part2: Literature Review: ISD selected tools ... 76

2.1 Introduction .. 76

8

2.2 Unified Modelling Language (UML) ... 76

2.3 Soft Systems Methodology .. 82

2.4 Domain-Driven Design .. 87

2.5 Sogyo domain-driven design .. 98

2.6 Implementation Patterns ... 98

Chapter 3: Research Methodology ... 100

3.1 Introduction ... 100

3.2 Research Paradigm .. 100

3.2.1 Research Paradigm Adopted ... 101

3.3 Research Approach ... 101

3.3.1 Research Approach Adopted ... 102

3.4 Research Method Selection ... 102

3.4.1 Action Research .. 102

3.4.2 Literature Review in Action Research .. 105

3.4.3 Case Studies Adopted in Action Research .. 106

3.4.4 Investigations, Interviews and Discussion in Action Research....................................... 109

3.4.5 Combining Evaluation Results from Different Stages of Action Research 112

3.5 Methods for validating the research findings .. 112

3.5.1 Reliability .. 112

3.5.2 Validity .. 113

9

3.5.3 Credibility .. 113

3.5.4 Transferability ... 113

3.5.5 Conformability .. 113

3.6 Ethical considerations ... 114

Chapter 4: Systemic Soft Domain Driven Design Framework (SSDDDF) 116

4.1 Introduction ... 116

4.2 Overview of the proposed framework (SSDDDF) .. 117

4.2.1 Pre-SSM Phase .. 119

4.2.2 SSM Application Phase ... 120

4.2.3 Post1-SSM Phase: Object-oriented domain modelling using UML 126

4.2.4 Post2-SSM Phase .. 133

4.3 Concluding Remarks about SDDDF ... 135

Chapter 5: Evaluating SSDDDF as an ISD approach Through Different ISD

Projects .. 137

5.1 Introduction ... 137

5.2 Undergraduate Project: Peer-Tutoring System ... 138

5.2.1 Pre-SSM Phase .. 139

5.2.2 SSM Phase... 140

5.2.3 Post1-SSM Phase: Moving from Soft Language (SSM Phase) to Domain Model 143

5.2.4 Post2-SSM Phase: Software Implementation ... 146

10

5.3 Undergraduate Project: Students’ Association System ... 147

5.3.1 Pre-SSM Phase .. 148

5.3.2 SSM Phase... 149

5.3.3 Post1-SSM Phase: Moving from Soft language (SSM Phase) to Domain Model 152

5.3.4 Post2-SSM Phase: Software Implementation ... 155

5.4 Postgraduate Project: Schools Liaison Coordination System ... 157

5.4.1 Pre-SSM Phase .. 158

5.4.2 SSM Phase... 159

5.4.3 Post1-SSM Phase: Moving from Soft Language (SSM Phase) to Domain Model 163

5.4.4 Post2-SSM Phase: Software Implementation ... 166

5.5 Postgraduate Project: Peer-Tutoring System Development .. 168

5.5.1 Pre-SSM Phase .. 169

5.5.2 SSM Phase... 172

5.5.3 Post1-SSM Phase: Moving from Soft Language (SSM Phase) to Domain Model 177

5.5.4 Post2-SSM Phase: Software Implementation ... 182

5.6 Concluding Remarks ... 185

Chapter 6: Evaluating SSDDDF Through Teaching ISD module and the

Comparison with other Frameworks ... 187

6.1 The importance of Students Feedback and Reflections to Evaluate the planned

Actions(The link between Action Research Evaluation approach) .. 188

11

6.1.1 Introduction ... 188

6.1.2 The cyclic process of Action Research Execution .. 189

6.1.3 Discussion and conclusion .. 190

6.2 Justifications of the evaluation framework ... 190

6.2.1 Justification of the selected criteria through the evaluation framework 191

6.2.2 Applicability of this Criteria gaining better results ... 192

6.2.3 Application of same criteria in similar work ... 193

6.3 Evaluating SSDDDF through teaching ISD module ... 193

6.3.1 In-class Surveys ... 194

6.3.2 Reflective Essays ... 195

6.3.3 Analysis of Common Mistakes in Classwork ... 196

6.3.4 Feedback Questionnaire .. 197

6.3.5 Conclusion ... 204

6.4 Comparing SSDDDF with DDD ... 205

6.4.1 Business Domain Perspectives(Evaluation criteria) ... 205

6.4.2 Modelling and Implementing ‘Business Domain’ Perspectives using DDD 206

6.4.3 Modelling and Implementing ‘Business Domain’ Perspectives using SSDDDF 206

6.4.4 The application and using the evaluation framework to Compare DDD with SSDDDF

as an ‘Information Systems Development’ Approach ... 210

6.5 Comparing SSDDD with Existing ISD Approaches ... 213

12

6.6 Conclusion ... 215

Chapter 7: Conclusion ... 216

7.1 Introduction ... 216

7.2 Results and Discussion .. 217

7.2.1 Evaluating SSDDD as an ISD Development Framework Through Different ISD

Projects ... 217

7.2.2 Evaluating SSDDD as an ISD Development Framework Through Teaching ISD

module .. 222

7.2.3 Evaluating the Comparison of SSDDD with DDD and other ISD approaches 225

7.2.4 Justification of the benefits of the evaluated framework SSDDD 227

7.3 Research Achievements .. 227

7.4 The limitations of the evaluation framework and criteria ... 228

7.5 Limitations of SSDDDF .. 229

7.6 Future Work .. 230

7.7 Concluding Remarks ... 231

Bibliography ... 232

Appendices .. 251

Appendix 1 .. 251

Appendix 2 .. 256

Appendix 3 .. 258

13

Appendix 4 .. 260

Appendix 5 .. 262

Appendix 6 .. 264

Appendix 7 .. 268

Appendix 8 .. 274

14

List of Tables
Table 2-1: Distinctions criteria between hard and soft problems 51

Table2- 2: Stages of transmitting from CPTM to use cases. ... 66

Table2- 3: The prioritised activities of PTS ... 69

Table2- 4: PTS activities involved in transition .. 69

Table2- 5: Actors of PTS ... 69

Table2- 6: PTS use case1 (Select Tutor) ... 70

Table2- 7: PTS use case2 (Select tutee) ... 71

Table2- 8: PTS use case3 (select room) ... 71

Table2- 9: PTS use case4 (schedule session) .. 71

Table2- 10: PTS use case5 (Mark Attendance) .. 72

Table2- 11: PTS use case5 (Allocate and reward tutor) .. 72

Table2- 12: PTS high level use cases ... 72

Table2- 13: PTS top level objects .. 72

Table2- 14: Domain modelling and Implementation project steps 95

Table2- 15: SSDDDF proposed steps.. 96

Table2-16: The steps of implementing domain objects ... 96

Table 3-1: Action Research .. 103

Table4- 1: Use case proforma items.. 128

Table 4-2: Add New Tutor Use Case .. 129

Table 4-3: Add New Tutee Use Case ... 129

15

Table 4-4: Add New Room Use Case ... 129

Table 4-5: Create Schedule Sessions Use Case ... 130

Table 4-6: Identify Reward Type Use Case ... 130

Table 4-7: Update Attendance Record Use Case ... 130

Table5- 1: SAS Stakeholders and their roles ... 148

Table5- 2: SAS use cases .. 153

Table5- 3: The objectives of database-driven reporting system 158

Table5- 4: PTS actors and functions .. 169

Table5- 4: CATWOE of PTS .. 174

Table 6-1: Means and Standard Deviations Relating to understanding and practising SSM

Component .. 200

Table 6-2: Means and Standard Deviations Relating to understanding and practising UML

component .. 201

Table 6-3: Means and Standard Deviations Relating to understanding and practising the

linking of SSM and UML ... 201

Table 6-4: Means and Standard Deviations Relating to understanding and practising the

implementation pattern ... 202

Table 6-5: Means and Standard Deviations Relating to understanding and practising the

framework as an integrated ISD framework ... 202

Table 6-6: Most Important UML Diagrams from Highest to Lowest 203

Table 6-7: Business Process Perspectives .. 207

Table 6-8: Handling of each Perspective by DDD .. 208

Table 6-9: Handling of each Perspective by SSDDDF ... 209

16

Table 6-10: Comparison between DDD and SSDDD .. 211

Table Appendix 2-1: Use Case for Creating/ Adjusting a Peer Tutor 256

Table Appendix 2-2: Use Case for Creating/ Adjusting a Peer Tutee 256

Table Appendix 2-3: Use Case for Creating/ Adjusting a Peer Tutoring Session............... 256

Table Appendix 2- 4: Use Case for Inserting a Tutor Attendance Record 257

Table Appendix 2-5: Use Case for Calculating Amount Receivable by Tutor 257

Table Appendix 6-1: Proforma for Use Case Import Monthly Report 264

Table Appendix 7-3: Proforma for Use Case Organize Course Group 266

Table Appendix 7-4: Proforma for Use Case Organize Contacts..................................... 267

Table Appendix 7-1: Proforma for Use Case Add New / Edit Tutor 268

Table Appendix 8-7: Proforma for Use Case Add New / Edit Tutee 269

Table Appendix 8-7: Proforma for Use Case Update Diary .. 270

Table Appendix 7-4: Proforma for Add Room ... 271

Table Appendix 7-5: Proforma for Schedule Session .. 272

Table Appendix 7-6: Proforma for Marking an Attendance Register 273

Table Appendix 7-7: Proforma for Calculate Rewards .. 273

17

List of Figures
Figure1- 1: Conceptualization of the thesis ... 38

Figure 2-1: Waterfall methodology for ISD ... 53

Figure 2-2: Iterative waterfall methodology for ISD ... 54

Figure 2-3: Spiral methodology for ISD .. 54

Figure 2-4: B-model for ISD ... 55

Figure 2-5: Multiview Framework... 59

Figure 2-6: SWM Framework ... 60

Figure2- 7: SSM to OOA Path .. 64

Figure 2-8: Elaboration Technique of Transition from Conceptual Model to Use Cases....... 68

Figure 2-9: System Use Case Diagram ... 70

Figure 2-10: Business Object Model ... 73

Figure2- 12: UML Models .. 76

Figure2- 13: Use Case.. 77

Figure2- 14: Actor ... 77

Figure2- 15: Relationship ... 78

Figure2-16: Include Relationship ... 78

Figure2-17: Extends Relationship .. 78

Figure 2-18: Product Management Use Cases .. 79

Figure 2-19: Activity Diagram of an Order Management System (Tutorialpoints-UML) 80

18

Figure 2-20: Class diagram of Combined Studies System (students’ work, 2011) 81

Figure2- 21: Enrolling a Student in a University Seminar .. 82

Figure2-22: Checkland’s Seven-Stage Soft Systems Methodology 83

Figure2- 23: Rich Picture of Classroom Interaction... 85

Figure 2-24: Conceptual Model of Teaching and Learning ... 87

Figure2- 25: The Development Process .. 88

Figure2- 26: Common Layered O-O System .. 95

Figure 2-27: The Building Blocks of DDD .. 97

Figure 2-28: Sogyo DDD Application Model ... 98

Figure 4-1: The SSDDDF Model .. 118

Figure 4-2: SSDDF Logic ... 118

Figure 4-3: The Conception of SSDDF ... 119

Figure 4-4: PTS Rich Picture .. 121

Figure 4-5: Rich Picture of Student Accommodation System .. 122

Figure 4-6: CM of Management View ... 124

Figure 4-7: CM of Lecturer’s View ... 124

Figure 4-8: Tutees’ View ... 124

Figure 4-9: Tutors’ view .. 125

Figure 4-10: Combined CMs (CPTM).. 125

Figure 4-11: Converting SSM Conceptual Diagram to Use Case Diagram 126

Figure 4-12: Initial Use Case Diagram for PTS .. 128

19

Figure 4- 14: Add a Tutor activity diagram .. 131

Figure 4-15: Identify Tutor Reward Type Activity Diagram ... 131

Figure 4-16: Class Diagram of PTS ... 132

Figure 4-17: Naked Object Implementation - Tutor Attendance 134

Figure 4-18: Naked Object Implementation - Edit ... 134

Figure5- 1: Rich Picture of PTS ... 140

Figure5- 2: CM of Management View ... 141

Figure5- 3: CM of Lecturer’s View ... 141

Figure5- 4: CM of Tutees’ View ... 142

Figure 5-5: CM of Tutors’ View ... 142

Figure5- 6: Consensus Primary Task Model (CPTM) for PTS .. 143

Figure5- 7: Use Case Diagram for PTS .. 144

Figure5- 8: Activity Diagrams .. 145

Figure 5-9: Class Association ... 146

Figure5- 10: Class Level Specification ... 146

Figure5- 11: Rich Picture of SAS ... 149

Figure5-12: CM of Management Member View .. 150

Figure5- 13: CM of Association Member View ... 150

Figure5- 14: CM of Student View .. 151

Figure5- 15: CM of Student Affairs View .. 151

Figure5- 16: CM of Colleges View ... 151

20

Figure5- 17: CM of Transportation View .. 151

Figure5- 18: The Consensus Primary Task Model (CPTM) of SAS................................... 152

Figure5- 19: Election Process Sequence Diagram .. 154

Figure5- 20: Produce Activities Sequence Diagram ... 154

Figure5- 21: Student Activities Application Sequence Diagram 154

Figure5- 22: Class Diagram of SAS ... 155

Figure5- 23: Testing Process for SAS .. 156

Figure5- 24: Rich Picture of the Schools Liaison Coordination System 160

Figure5- 25: Client’s Overall Point of View ... 161

Figure5- 26: Client’s Point of View about Reports ... 161

Figure5- 27: Client’s Point of View about Contacts .. 162

Figure5- 28: Consensus Primary Task Model (CPTM) ... 162

Figure5- 29: Activity Diagram for Import Monthly Report... 164

Figure5- 30: Activity Diagram for Add, Edit or Delete Course Groups & Courses 164

Figure5- 31: Activity Diagram to Generate and Print a Report 165

Figure5- 32: Class Diagram of the Schools Liaison Coordination System 166

Figure5- 33: Rich picture of the PTS ... 173

Figure5- 34: CM of Management’s View ... 175

Figure5- 35: CM of Tutee’s Point of View ... 175

Figure5- 36: CM of Tutor’s Point of View .. 176

Figure5- 37: CM of Lecturer’s Point of View .. 176

21

Figure5- 38: CPTM of PTS .. 177

Figure5- 39: Use Case Diagram of PTS .. 179

Figure5- 40: Activity Diagram to Update a Tutor or Tutee .. 180

Figure5- 41: Activity Diagram for Scheduling a Session ... 180

Figure5- 42: Class Diagram ... 181

Figure5- 43: PTS Architectural Model Implemented with Naked Objects......................... 182

Figure5- 44: Naked Objects MVC Application .. 183

Figure 6- 1: Most Important UML Diagrams from Highest to Lowest 204

Figure Appendix 3- 1: PTS Implementation Screen Shot .. 258

Figure Appendix 3- 2: PTS Implementation Screen Shot .. 258

Figure Appendix 3- 3: PTS Implementation Screen Shot .. 259

Figure Appendix 4-1: Activity Diagram for Management, Association and Students 260

Figure Appendix 4- 2: Activity Diagram for Student Affairs, Colleges and Transportation . 260

Figure Appendix 4- 3: Activity diagram for the election process 261

Figure Appendix 4- 4: Activity Diagram for Preparing Activities Schedule 261

Figure Appendix 4- 5: Activity Diagram for Preparing Candidate Schedule 261

Figure Appendix 5- 6: Activity Diagram for Preparing Student Application 261

Figure Appendix 5- 1: Main Menu of SAS Software Screen Shot.................................... 262

Figure Appendix 5- 2: Data Entry Screen Shot ... 262

Figure Appendix 5- 3: Java Code through Eclipse Screen Shot 263

Figure Appendix 5- 4: Drag and Drop Screen Shot .. 263

22

Figure Appendix 6- 2: Use Case Diagram Prepared by Din (2009) 265

Figure Appendix 8- 1: Screen Shot - Tutor’s Availability .. 274

Figure Appendix 8- 2: List of Tutees needing Support in Programming 275

23

List of Appendices

Appendix 1: Background questionnaire………………………………………………………………………………223

Appendix 2: Use cases proforma for PTS (undergraduate)…………………………………………….…225

Appendix 3: PTS implementation using Naked Objects…………………………………….………………227

Appendix 4: Activity diagrams of SAS…………………………………………………..……………………………229

Appendix 5: SAS implementation using Naked Objects…………………………………….………………231

Appendix 6: Use cases proforma for SLCS (postgraduate)…………………………………….…………233

Appendix 7: Use cases proforma for PTS (postgraduate)………………………………………..…….…237

Appendix 8: TrueView implementation for PTS (postgraduate)………………………………….….…243

24

Acknowledgements

Special thanks are due to all the people who have encouraged me to complete this research

work, especially:

To my beloved wife Dalal - you are an amazing gift, an exceptionally excellent woman and

the best wife. Thank you for supporting me to finish this work.

To my little cute daughter Layan, who always prays to God to help ‘Baba’ get the doctorate

and come back home safely.

To my other daughters and sons, Nariman, Doaa, Rawan, Razan, Ahmed, Saja, and Mustafa

- thank you for your patient acceptance of me leaving you alone for a long period.

To my father, who died while I was in the early stages of this work.

To my mother - I hope for her good health.

Special thanks to my kind supervisor Dr. Steve Wade for his cooperation and support.

Special thanks also to my co-supervisor Professor Jun Lue, and to the school research office

team, especially Gwen and Chris.

To all friends and colleagues in Ajman University, UAE, who have always encouraged me to

complete this work.

25

Chapter 1: Introduction

1.1 Background and Motivation

Information system (IS) is defined by (Davis, 2000) as an organisational system that

delivers information and communication services required by the organization. A

comprehensive definition of IS comes from Laudon & Laudon (2009) where they defined the

IS as “related parts working together to collect, process, store, and produce information for

supporting decision making, coordination, control, analysis, and visualization in an

organization”. Zwass (2016), defined IS as “integrated set of components for collecting,

storing, and processing data for providing information, knowledge, and digital products” .

The literature on IS has emphasized on its application among the computer-based

information and communication tools and the difficulties in understanding and developing

information systems for effective utilization.

IS addresses several issues that might improve the organisational operations, for instance,

facilitating organisational every-day operations, simplifying the interaction process between

the organisation, customers and suppliers, and improving the organizational performance

and profitability (Devaraj and Kohli 2003; Hendricks et al. 2007; Melville et al. 2004;

Sabherwal et al. 2006). Therefore, IS might add a competitive edge for the organisation in

the marketplace (Zwass, 2016). With the progressive development in technology,

organisations utilise IS to facilitate the execution of different tasks with accuracy and

preciseness. Also, time is one of the key factor that assists in improving the organisation’s

work and performance. IS, performs complex tasks with minimum intervention from the

users, and hence, consumes less time while increasing the efficiency ((T Bhuvaneswari & S

Prabahara, 2013).

Globalization and high competitive environment has compelled the organizations in

improving their information systems for meeting the demands of the emerging markets

(Kaur & Aggarwal, 2013). However, several critical issues are encountered in an information

system that must be handled in order to ensure the achievement of the desired goals. IS

failure, where information systems are unable to meet the user expectations, create a

working or a functioning system (Ewusi-Menash 2003), encounter a budget overrun, have a

26

late delivery, and fail to achieve objectives are the impending issues. Information system

and its management experiences high failure rate, either total or partial. IS failure can have

more severe consequences where the system stops running completely (total), or some of

the system functions do not working properly (partial). Also, the failure can be temporarily

(a day or few days) due to some technical and non-technical problems (Donaldson, A. J. M.,

& Jenkins, J. O., 2001). Hence, the organizations do not achieve their required targets in

using IS, and IS failures might cause financial loses.

Different reasons might contribute in IS failures. For instance, the organizational structure

and culture factors are found to cause IS failures (Lavallée, M., & Robillard, P. N., 2015).

Language and cultural barriers among the IT developer and user can create disappointment

in the developed IS and cause a complete failure. The other reasons of information system

development failures are inadequate support/leadership from senior management,

ignorance towards the stability of the technology used, lack of efficient communication and

failure to manage complexity (Kaur & Aggarwal, 2013). Lack of cooperation within the

teams, lack of standardization, lack of devotion, no availability of data and lack of

management support are some of the other factors that affect the successful development

and implementation of information systems (Al-Mahid & Abu-Taieh, 2006). In addition,

wrong choice of Information System Development Methodology (ISDM) or framework are

also potential reasons for failure information systems (Charvat, 2003; Sauser et al., 2009).

There are different definitions of ISD, and the most comprehensive definitions are:

 The purposes of using ISDM(s) are to investigate and gather the system requirements in

order to develop information system to support the organizational needs. ISDM might

27

capture all information needed from the business domain, and this information should be

used throughout the IS development process.

Information systems are distinguished from other fields on the basis of its foundation

pertaining to the “artefacts in human machine systems”, where the focus in laid on the

human elements in an organizational system. Thus, the information system refers to both

the aspects, soft and hard (Hasan, 2003). The ISDM that are unable to handle the

information systems perspectives (both ‘soft’: “human-centred” and ‘hard’: “technology-

centred”) causes the IS failure. Several information systems have failed, which are usually

attributed to poor business process modelling (Barjis, 2008). The design and

implementation of information systems within an organization have found to cause

challenges and failures due to their incompatibility with the business process models. It has

been argued that one of the major reasons for information systems failure is the tendency

to concentrate more on the technical aspects (hard aspects) of the design rather than

acquiring a thorough understanding of the business needs (soft aspects), thus, leading to a

poor business process model which might not adequately support the design and

implementation of the IS (Alter, 2006).

It is also argued that the adapted methodology or framework might use the business

modelling to create an abstraction of the business in order to get a clearer understanding of

its information requirements, so as to improve the current process (Alzubidi, Recker &

Bernhard, 2011). There have been a number of attempts to develop business models using

hard approaches, such as the unified modelling language (UML) which is primarily an

object-oriented modelling approach that can model the hard aspects of business processes

in different diagrams. Using the same modelling language to represent the business and the

software that supports it is attractive. If this is possible, clearer communication can be

expected between people who are involved in managing the business and those responsible

for developing the IS. UML can be used for the analysis and design of system processes to

acknowledge the business needs before the development of the information systems (Yusuf

et al., 2011). However, UML cannot handle soft issues, and only considers the ‘hard’ system

requirements. Therefore, soft system methodology (SSM) is used for information system

analysis to deal with the soft issues. SSM is an approach to business process modelling that

can be used for both general problem solving and management of change. The approach

has been most successful in the analysis of complex situations because there are different

views about the problem identification and definition(i.e. ‘soft problems’).

28

Understanding the business needs and inculcating them in the development of information

systems contributes to the successful compilation of the system without any failure. Also,

determining and understanding ‘soft’ and ‘hard’ business systems aspects is highly

important for developing information systems which are expected to reflect business needs.

Therefore, in order to consider both the soft and hard issues, a combination between UML

and soft approaches like soft system methodology are encouraged (Checkland, 1981;

Bustard et. al, 1999; Sewchurran & Petkov, 2007; Al Humaidan, 2006).

However, as mentioned above, the software engineering and the development approaches

of information systems are rich in complexity and beset with challenges, resulting in IS

failures. The development of information system is integrally complex as it addresses both

technological challenges and organizational issues that falls out of the project scope. Also,

the organizations strive to use their existing systems and integrate changes within them

with new development efforts that further increases the complexity. Further, the dynamic

business requirements and organizational needs have created difficulties in developing a

system that fulfils all the requirements and system specifications (Xia & Lee, 2005).

Handling the complexity of IS development projects have been the most essential

responsibilities of IS managers in an organization, hence, presenting a dire need of

investigation. Therefore, to reduce the complexity of processes in an information system

development, it is crucial to follow a systematic approach of development. This indicates

that a systematic approach (framework) is required for capturing the information from

business processes(business domain), and to explore their models in an aproper way to

enable the IS development and avoid IS failures (Sewchurran & Petkov, 2007; Al Humaidan,

2006; Strong and Volkoff 2010; Volkoff et al 2007). Also, this addresses the need to bridge

the gap between ‘business process modelling and implementation’, in order to model and

implement the business domain model as IS.

Through this holistic view of IS failure, this thesis attributed the IS failure reason which

belong to “wrong choice of the ISDM or framework used to develop IS”. The thesis aims to

investigate ISDM and explore the possibility of developing and evaluating a

multimethodology framework for information systems development, and its applicability to

a consideration of both ‘soft’ and ‘hard’ system aspects which might help to eliminate the IS

failures.

29

1.2 Business Domain Modelling and Implementation

A business domain model consists of structural and behavioural components. The structural

part provides an understanding of business artefacts and determines the relationship

between them, while the behavioural part corresponds to the business processes of the

business domain (Bennett, 2007).

The business domain models adopted by different organizations are similar but differ in

terms of perspectives (Oldfield, P., 2002). Domain model represents the application domain

that facilitates communications between business experts and IT through ISDM (Rose J.,

2002). Therefore, the challenge is to adopt a framework which provides the project team

with the required tools for modelling the business artefacts and also allows an easier mode

of interaction. If an appropriate framework is adopted, then the organizations can build a

proper business domain model which can be mapped into IS during later stages. Based on

this knowledge, it is argued that there is a need to adapt an understandable language for

the team members to interact between business domain investigation phases until the code

generation phase. The ICONIX process (is a use case driven process and it’s consist of four

millstones for Information Systems Development (ISD), (Rosenberg & Stephens, 2007)

supported this idea and concentrated on the importance of having a common

communication language to facilitate communication between the team throughout all

phases of a project. Domain-driven design, or DDD, (Evan, 2004), is a software

development approach which adopts a ‘ubiquitous language’ as a communication language

between the project team. This language is the backbone of the model and the base for the

developers and the business experts to have a common understandable communications

between them through the development of IS phases.

1.2.1 Domain-Driven Design

Domain-Driven Design (DDD) models business processes as a ‘domain model’ that can be

mapped automatically into object-oriented codes to produce an information system (Evan,

2004). This approach concentrates on a clear understanding of the business domain by

utilizing a ‘ubiquitous language’ as a communication tool between different stakeholders

(business experts and developers). The other mechanisms utilized by DDD approach is UML

modelling and object-oriented programming languages. The basic idea of DDD is that the

design of the software must reflect the business domain in order to develop the requested

information system. DDD assumes that the business experts will become familiar with the

related diagrams and tools through the discussion, but because these techniques are usually

30

mastered by the developers and not business experts, the idea of ‘knowledge crunching’

(Evan, 2004) is used, which consumes more time in understanding the technical aspects of

the language. However, it may be argued that business experts will encounter difficulties in

‘crunching the knowledge’ and understanding these tools. Therefore, there is a need to

reconsider and modify the structure of the language to make it more comprehensive for

different stakeholders, especially business experts. This is considered as a potential gap of

this approach, which requires improvement of the ‘ubiquitous language’ into new version

called ‘soft language‘, as proposed in this thesis.

1.2.2 Hard Approaches

ISDM can be grouped into soft and hard methodologies. One classification approach has

been classified hard methodologies into traditional approaches (heavyweight) and Agile

approaches (lightweight) (Boehm & turner, 2003; Charvat, 2003; Highsmith, 2013;

Wysocki, 2009). Heavy weight like Waterfall (Benington, Herbert D., 1956, 1987), Iterative

Waterfall (Winston Royce, 1970), Waterfall (Bell, Thomas E., and T. A. Thayer. , 1976), B-

Model (Birell and Ould, 1985), Information engineering (Martin & Finkelstein, 1981), Spiral

model (Barry Boehm, 1988), Structured Systems Analysis and Design Methods (SSADM)

(Ashworth and Goodland,1990), Unified Software Development Process (Jacoboson, Booch,

& Rumbaugh, 1999), prototype model (Pressman R. S., 1994), and Microsoft Solution

Framework (MSF) model (Microsoft, 2004). Other classification approach classified hard

approaches into models based on sequential approach like waterfall model, and models

based on iterative approach like prototype model, spiral model, unified process model,

Microsoft solution framework, and agile methods (Predrag Matkovic & Pere Tumbas, 2010).

Other approach classified hard approaches into structured methodology and object oriented

methodology.

Agile methods are not fixed and standard steps, but are base methods that can be modified

from one project to another. Agile approaches require a base method to be configured by

comparing the conceptual model of the information system development process with the

requirements of the project being developed. These methods aimed to provide sufficient

processes for any given project but tried to avoid detailed descriptions of processes

(Ambler, 2002). Later, object programming languages such as Java and C# were

introduced, and these languages were supported by object-oriented analysis and design and

o-o relational databases. These languages facilitated the agile methods by increasing the

speed of developers in programming, without wasting time in the design details.

31

The unified modelling language (UML) was introduced by Fowler and Scott (2000) as a

means of representing object-oriented programming design. Later, this became a standard

for software design. UML consists of a group of diagrams to describe the software system.

Different development methods have adopted UML diagrams, such as the ‘Unified Software

Development Process’ (USDP) (Jacobson, I., Booch, G. and Rumbaugh, J., 1999) and the

‘Rational Unified Process’ (RUP) (Kruchten, 2004; Manalil, J. (2011)). Some of the other

agile methods also became familiar in use, such as Alistair Cockburn’s ‘Crystal’ family of

methods (Cockburn, 2001), Peter Coad’s ‘Feature Driven Development’ (Coad, 1999) and

Jim Highsmith’s ‘Adaptive Software Development’ methods (Highsmith, 20013). Agile

methods are base methods that can be modified from one project to another. The base

method is configured by comparing the conceptual model of the software development

process with the requirements of the project being developed.

Systems requirements consist of hard and soft aspects. The hard systems approach deploys

methods for designing an optimal solution for the development of information systems, it

however lacks in terms of comprehending the ‘human’ element. All hard approaches focus

on the systems’ and users’ requirements, which are mainly classified under ‘system hard

aspects’. It keeps the technical aspects on priority and follows a scientific approach to

problem-solving. However, soft aspects are also important parts of any system and must be

considered. Therefore, soft system approaches were developed in 1980s to incorporate the

human element in the development of information systems (Van de Kar & Verbraeck,

2008). Soft system methodology is one of the most extensively used approach in soft

systems, which is briefly described in the next section.

1.2.3 Soft Systems Methodology

Checkland, 1981 and other researchers developed a methodology called Soft systems

methodology (SSM) at Lancaster University. It is a problem-solving methodology which

focuses on the soft issues of a system and is applied to investigate problematic situations

(Checkland & Scholes, 1990; Checkland & Howell, 1997). Soft system approaches or SSM

assumes that human factors are highly essential, the stakeholders consider the problems

differently, and the outcomes must be learning and better than solutions. SSM focuses on

the development of conceptual models of the system which will be compared to the existing

real world model. This approach can be used to investigate different systems in different

situations, and it contributes to the analysis of information systems design. SSM is a

methodology which is well known for dealing with soft system aspects, exploring problem

32

situations and modelling human activities using different diagrams such as rich picture and

human activity system diagrams. These diagrams are not technical but seek to represent

the real world as an abstract model. However, the high complexity and difficult

management of business projects concerned with information system, requires a more

efficient approach to tend to both the soft and hard issues, as SSM gives priority to soft

systems. Therefore, integrated approaches have been developed to incorporate both these

aspects.

1.2.4 Soft and hard aspects in software design and development

Software development has been rendered as a domain that addresses socio-technical

aspects, where the focus has been laid on the need to communicate between the users and

developers (Ahmed et al., 2013). The development of software and information system is

reliant on two aspects, soft, which refers to the problem solving capabilities, social

interaction and human needs, and hard, which refers to the technical perspective of

developing a system. While selecting an information system methodology to solve a

problem, a distinction between hard and soft problems must be considered to guide the

selection. Hard problems emphasise on answering the question of ‘how’ a system has to be

developed. With hard problems, there is a solution by which the aims are achieved. Hard

approaches to system development have been succeeded in developing information systems

from the technical perspectives. On the other hand, as mentioned by Curtis (1992), the

information system sometimes rejected by the user as they are unable to comprehend its

utility. This raise the issue that an alternative approach is required to capture the human

elements (soft) of a system. Therefore, it is essential to incorporate both the hard and soft

system requirements to fulfil the success of various applications where information systems

are developed. The different approaches to utilize these hard and soft aspects have been

further explored in the literature review chapter of this thesis.

1.2.5 Combining SSM and UML

There are different researchers trying to integrate SSM with structured development

methods (Keys, P. and Roberts, M., 1991; Lewis, P., 1995; Miles, R., 1992; Mingers, J.,

1988; Prior, R., 1990. More recently, some efforts to integrate SSM with object oriented

were made, (Bustrad, et al, 2000) which executed the integration of SSM with UML use

cases. The work in this area demonstrates the importance of such integration for

investigating a complex and messy problem situation. Other research efforts clarified that

using techniques from hard approaches alone (e.g UML) is not applicable when the

33

requirements unclear and the combination between SSM and UML is required to evaluate

the requirements from the perspectives of different stakeholders (Bustrad, et al, 1999;

Steve W. & Judith Hopkins, 2002; Al Humaidan, 2006; Sewchurran & Petkov, 2007). They

concluded that the combination of SSM and UML encouraged the SSM exploration of system

activities from the system itself and their conversion into use cases (representing the

system activities) from the users’ perspectives (Bustrad, et al, 1999), and combining UML

with SSM might help in modelling both ‘hard’ and ‘soft’ system aspects of the business

domain to develop IS, which are expected to reflect business needs (Al Humaidan, 2006;

Sewchurran & Petkov, 2007; Bustrad, et al, 1999; Steve W. & Judith Hopkins, 2002). This

combination is achieved using use case diagrams that will accommodate all the knowledge

generated by SSM conceptual models during the business domain investigation phase. The

combination of SSM and UML is expected to provide a good improvement to the modelling

and implementation of businesses processes within the business domain, and to contribute

to the elimination of information systems failure.

Recent work shows that the combination between SSM and UML is used to contextualise the

problem space using SSM and developing UML models to solve the complex problems (Ross

Fenning et al, 2014) to design a complicated search engine for BBC (British Broadcasting

Corporation). Other recent works have presented systems thinking-based approach for

finding the requirement in complex situations, by exploring and identifying the challenges of

complex situation requirements gathering to be the requirements nature, the observer role,

and the system environment (Polinpapilinho F. Katina, Charles B. Keating, Ra’ed M. Jaradat,

2014). Minger (2001) added that gathering understandable, consistent, modifiable, and

verifiable requirements is difficult with the complex situation. Further, to achieve such

requirements, a change in paradigm is required such as an integrated multiple

infrastructure through holistic thinking, as done in this thesis to mix different methods from

different paradigms to deal with complex situation (Minger, 2001).

The combination of SSM and UML is expected to provide a good improvement to the

modelling and implementation of businesses processes within the business domain, and to

contribute to the elimination of information systems failure. It is further argued that using

SSM to explore the business domain may be a good addition to the DDD, as SSM can be

used at the beginning to explore the problem situation, and both domain experts and

developers should share the exploration of the problem and the development of the SSM

conceptual models. This may increase the developers’ understanding and awareness of the

targeted domain, and may help the domain experts in mastering the conceptualizing skills,

34

which will facilitate their understanding in the later stages of technical modelling. The output

of SSM is expected to be a good addition to the ubiquitous language, since it consists of

human activity models that can be understood by both business experts and technical staff.

These related works have recognized the need for more investigation of business domain,

with more emphasis on soft and hard system aspects that can affect the successful

implementation of the information system. This has encouraged the current researcher to

use this combinations into a proposed framework that might model and implement the

system perspectives of the business domain into an IS which might help to eliminate IS

failures. It has further motivated the research in suggesting a complementary language

called ‘soft language’, for the new proposed framework, which is called ‘Soft Domain-Driven

Design’.

1.3 Research Aims and Objectives

The current research aims at integrating both hard and soft approaches to improve the

development of information systems. Also, the study aims to develop a framework that can

be effectively deployed in the information system development projects undertaken by

students. This thesis addresses several different important issues. First, it describes the

problem that most of the multimethodology frameworks are unable to consider. Both, soft

and hard systems aspects are considered in exploring and modelling business domain

processes. Secondly, it investigates, analyse and models the business domain processes,

creating a domain model that reflects the internal business processes of the business

domain concerned. The model is then used to implement the target domain into a software

system. Thirdly, it focuses on the integration of software development approaches in order

to formulate a multimethodological framework that can consider all soft and hard system

aspects in the context of business domain process modelling. It demonstrates and use a

technique to move from the SSM conceptual model into UML use cases. Finally, it uses the

multimethodology as a guided framework for information systems developers to help them

through the system development stages step by step.

The proposed framework SSDDDF is based on a multimethodology approach, which justifies

the combination of methods for the same business intervention (Mingers, 2001). It is a

multi-method framework which is intended to guide developers through the investigation of

a problematic situation. Therefore, the purpose of the framework is to achieve a

35

comprehensive understanding of the systems being developed, and to easily guide

developers step by step through what they are developing.

Therefore, the research questions of the research undertaken in this thesis are:

Q1: How can we formulate a multimethodology framework that will allow us to investigate,

analyse, model, and implement the business processes from a specific domain by

considering all the relevant “soft” as well as “hard” system requirements?

Q2: What benefits can we demonstrate from applying the proposed framework in a number

of ISD projects?

1.4 Contributions

As stated above, the development and evaluation of the SSDDD framework has aimed to

answer two research questions in order to fill the mentioned gaps in the knowledge. This

process has enabled certain contributions to be made by this research, which are outlined

as follows:

1- The research proposes and demonstrates the application of a multimethodological

framework for information systems development called ‘Systemic Soft Domain-

Driven Design Framework (SSDDDF) to deal with both ‘soft’ and ‘hard’ business

domain perspectives as an improvement of DDD. The proposed approach is an

improvement to the existing approaches and forms an effective mechanism of

comprehending all the requirements of the system.

2- The research introduces a ‘soft language’, as a complement to DDD’s ‘ubiquitous

language’, which consists of SSM modelling tools to facilitate the communications

between the ISD project stakeholders. With this language, the communication is

increased with high level of clarity.

3- The research demonstrates a technique to perform transition from SSM CPTM

(Conscious Primary Task Model, Brian Wilson’s, 1990) to UML use case diagram.

This technique is demonstrated through different applications of the framework in

school projects.

4- The research models the business domain as a ‘domain model’ (UML Class

diagram and other UML supported diagrams), which can be moved directly into

36

software code through implementation patterns. It further recommends the tools

of implementing patterns (Naked Objects or TrueView).

5- Demonstration and practising of how SSDDDF can be used as an ISD framework

through different projects taken by students.

1.5 Thesis Outline

This thesis explores how soft systems methodology (SSM) and unified modelling language

(UML), as tools of domain-driven design (DDD), can be integrated within a wider framework

to increase the effectiveness of requirements modelling for information systems (IS)

development. The proposed framework leads to a detailed domain model that is a literal

representation of an information system that could be implemented by following the Naked

Objects or TrueView (implementation patterns). Within the proposed framework,

requirements analysis is conceived as a two-stage process. Firstly, a business analysis is

carried out to make sense of the human activities performed in an organization. In this

stage, SSM is employed to help users understand what information they need and why

(introducing ‘soft language’ as a compliment of ‘ubiquitous language’ developed by Eric

Evan, 2004). Secondly, a technology-oriented analysis is carried out to define what

technological facilities might support the organizational activities. Here, DDD tools (UML and

others) help to build a data structure capable of satisfying the information needs identified.

The results of DDD are then implemented using the Naked Objects framework or TrueView

(implementation patterns). The outline of this thesis is as follows:

Chapter 1: This chapter discusses the background of the study, and explores DDD,

business process modelling, soft and hard of information system development, integrating

SSM and UML, research aims and objectives and contribution of the study

Chapter 2: This chapter refers to the literature review, which is divided into two parts.

Part1 reviews and discusses related works, which include those methodologies and

frameworks related to ISDM, business process modelling, and similar multimethodology

frameworks in the literature. Part2 provides the descriptions of the selected tools used by

the proposed framework like domain-driven design, soft system methodology, and UML, and

implementation pattern.

 Chapter 3: This chapter presents and describe the methodology adopted in this research

to propose and evaluate the framework SSDDD.

37

 Chapter 4: This chapter describes, explains, and illustrates the proposed SSDDD

framework by explaining all development process in detail.

Chapter 5: The chapter presents the application and evaluation of the framework by using

different projects at undergraduate and postgraduate level.

Chapter 6: Here, the evaluation of the framework is presented through teaching ISD

module ‘Methods and Modelling’ and by comparing it with the domain-driven design and

other ISD frameworks reviewed in Chapter 2.

Chapter 7: This is a summary and conclusion chapter which considers the results of all the

evaluations presented in other chapters, presents the contribution of this thesis, provides a

discussion of the results, and offers recommendations for future investigation.

1.6 Conceptualization of the Thesis

The following Figure 1-1 presents the flow of this thesis through the different chapters and

shows how each chapter can be visited through the reading process.

38

Figure1- 1: Conceptualization of the thesis

39

Chapter 2: The Research Context (Literature

Review and selected ISD Tools)

Part 1: Literature Review

2.1 Introduction

This review critically collecting and evaluating information from the relevant existing

literature on information system development and the failures encountered in them. It

further explores the business process frameworks, business domain modelling and

information system development methodologies. Also, the soft and hard aspects of the IS

are explored, wherein the integration of SSM and UML, transition from SSM to UML use

cases, domain driven designs and multi-methodology frameworks are discussed. The

purpose of this critical literature review is to find and review the available studies related to

the research aims and objectives of this research work (explore different contexts and their

related research results) and to come with a related conclusions to support this research.

2.2 Introduction to Information Systems

Information system is defined by (Zwass, 2016) as “integrated set of components for

collecting, storing, and processing data for providing information, knowledge, and digital

products”. Davis (2000) defined IS as an organisational system to deliver information and

communication services required by the organization. Laudon & Laudon (2009) provided

comprehensive definition of IS, where they defined the IS as “Interrelated components

working together to collect, process, store, and disseminate information to support decision

making, coordination, control, analysis, and visualization in an organization”. According to

Hasan (2003), information systems (IS) are regarded as the essential attributes in the

modern technology that has enabled the intricate combination of socio-technical aspects

constituting of hardware, software, people and work processes. An information system

comprises of shared technology resources, which are essential for managing the specific

information system applications. The other components of IS includes the application

software services, telecommunications, resource planning, knowledge management systems

and customer relationship management, which are all facilitating the growth of an

organization (Kaur & Aggarwal, 2013). For effective business operations, organizations

strive to develop and adopt information system tools for enhancing efficiency and

40

productivity. Information systems processes the input data of an organization and

generates valuable information that enables the successful compilation of operations.

Information systems assist the organizations in conducting thorough research, developing

and deploying new approaches of conducting business operations, for the purpose of

increasing efficiency. Organizations and enterprises have to manage a gamut of data and

information from several sources and exploit them to perform business functions, which can

be effectively organized by the information systems. These systems are capable of

generating automatic steps of performing operations that were once done manually, thus

not only increasing accuracy but also saving time. Information systems supports the

organization in managing the information, taking critical decisions and implementing the

business processes in an efficient way as possible (Laudon, 2009). Advances have been

made in information systems with the augmentation of globalizations, where new tools and

techniques have not only assisted in saving time in executing business activities, but also

reduced the costs of operating and transacting. In recent times, every organization has

been equipped with an IT department comprising of IT professionals, managers or

outsourced IT services, thus forming the integral component of an organization’s

infrastructure. The IT department is accountable for managing the hardware, software, and

other essential IT services, i.e. developing IS. The information systems are developed in an

organization to find patterns in the information and create knowledge for increasing the

productivity of the businesses through better decision making via information system

intelligence (Laudon, 2009).

2.2.1 Information System Failures

Information systems failure is widely documented in the literature and a variety of different

reasons are given for it. According to Kivuva T. (2012), information systems have evolved

with time to address organizational needs by not just performing simple computational

operations but also acknowledging strategic needs of processes. The researcher investigated

the failures and challenges that are encountered in the development and implementation of

information systems, and found that scheduling overruns, poor management, organizational

politics, slow adaptation of changes and procurement process, poor understanding of

requirements, poor IT infrastructure and lack of technical staff are the causes of failures.

Therefore, it is inferred that understanding the requirements of the project is essential in

the development of the information systems, which must be addressed with changing time,

41

as with time the requirements may also change. The failures have a significant impact on

the efficiency of the operational processes and lead to poor performance of an organization.

According to Lucky & Adegoke (2014), the challenges faced in the development of

information systems correspond to the infrastructures (both hardware and software),

materials, processes and manpower, and lack of funds which must be addressed for gaining

effectiveness. The researchers have further determined that developing a complex

information system requires a multimethological approach that is rendered as the most

effective strategy. Qualitative analysis were performed by the researchers to reach the

conclusions, however, the challenges pertaining to the infrastructure were not well

investigated. The study concluded that a well-structured information system is required with

a central database to address the challenges and mitigate the causes of failure.

Al-Mahid & Abu-Taieh (2006) discussed the factors that interfere in the successful

development of the information system in developing countries. It was revealed that the

factors such as the attitudes of developers, poor coordination, lack of data appreciation,

computer illiteracy, lack of supporting regulations, lack of collaboration and understanding

of requirements causes IS failures. The researchers have emphasized on providing

appropriate education and promoting IT to overcome the challenges, however, they have

failed to address the challenge of poor understanding of the requirements. Kaur & Aggarwal

(2013) have stated that the inability to manage complexity of the information systems is a

critical reason of failure that must be acknowledged and resolved. If the challenges are not

addressed, then the failure of information systems will have a direct impact on the overall

productivity of the organization. Therefore, it is imperative to avoid such failures for the

purposes of gaining business advantage in the competitive environment.

Ewusi-Menash (2003) discussed the cases of IS failures where information systems are

unable to meet the user expectations, create a working or a functioning system, encounter

a budget overrun, have a late delivery, and fail to achieve objectives are the impending

issues.

According to Donaldson, A. J. M., & Jenkins, J. O. (2001), Information system and its

management experiences high failure rate, either total or partial. IS failure can have more

severe consequences where the system stops running completely (total), or some of the

system functions do not working properly (partial). Also, the failure can be temporarily (a

day or few days) due to some technical and non-technical problems (Hence, the

42

organizations do not achieve their required targets in using IS, and IS failures might cause

financial loses.

Lavallée, M., & Robillard, P. N.(2015) try to be more comprehensive by trying to find

different reasons might contribute in IS failures. According to them, the organizational

structure and culture factors are found to cause IS failures. Language and cultural barriers

among the IT developer and user can create disappointment in the developed IS and cause

a complete failure.

Kaur & Aggarwal, (2013) determined other reasons of information system development

failures to be inadequate support/leadership from senior management, ignorance towards

the stability of the technology used, lack of efficient communication and failure to manage

complexity .Lack of cooperation within the teams, lack of standardization, lack of devotion,

no availability of data and lack of management support are some of the other factors that

affect the successful development and implementation of information systems according to

(Al-Mahid & Abu-Taieh, 2006).

Charvat, 2003 and Sauser et al., (2009) illustrated that the wrong choice of Information

System Development Methodology (ISDM) or framework are also potential reasons for

information systems failure.

Another reason of IS failure include poor business process modelling, concentrating on the

technical aspects of design rather than on understanding business needs. The information

system refers to both hard and soft aspects, and thus, both of these must be incorporated

in the development and implementation of information systems to avoid any failure. This

issue is related to the information system development methodology (ISDM), and a number

of different methodologies and frameworks are available for developing information

systems, some of which have been recently developed. ISDM is the backbone of information

systems as it is used to structure, plan and manage the complete procedure of

development. It is expected that these frameworks, if applied and used well, will reduce

software systems failure, as it will understand the requirements and needs of business

operations and inculcate them into the development of the information system. On the

other hand, the poor selection of ISDM leads to ISD failure. Therefore, a framework that is

able to handle both hard and soft system issues must be developed and adopted

(Sewchurran & Petkov, 2007; Al Humaidan, 2006; Strong and Volkoff 2010; Volkoff et al

2007; Bustrad, et al, 1999; Steve W. & Judith Hopkins, 2002). The thesis acknowledged all

43

reasons of information systems failure as mentioned above in this section. One major

reason of information system failure which is related to ISD methodology attributed as an

important reason. This lead to the main aim of this research work is to propose a framework

which can be used for information systems development. Information systems are used to

support an organization and because of this, business process investigation and modelling

must take place first, in order to understand what is required from the information system;

then, the tools and methods required to handle such a system can be determined.

2.3 Business Processes

The studies of business process dates back to as early as 1911, when Fredrick Taylor

researched the effectiveness and efficiency of work procedures in order to improve them.

More efforts to improve business processes continued, and ranged from studies in ‘business

process reengineering’ (BPR) by Davenport and Short (2003) and Hammer (2009), to

explorations of ‘business process management’ (BPM) by Goyal, D. P. (2012), with the goal

of improving business performance. The transition to BPM occurred because several BPR

projects had failed and attracted certain criticisms. More recently, researchers have been

concentrating on ‘business domain modelling’, which aims to distil knowledge from business

domain experts in order to create a business domain model and thus develop the software

system. One of these researchers is Eric Evan (2004), who focuses on generating business

domain models from business domain experts and has introduced the ‘ubiquitous language’

as part of domain-driven design approach. DDD is considered by this thesis as the main

framework for information system development and will be discussed further in part2,

section 2.4.

There are different definitions of a business process, which are based on the idea of a

deterministic system that receives inputs and transforms them into outputs following a

step-by-step series of activities. This perspective is rooted in the idea of production

processes, which can be described as a step-by-step procedure of taking raw materials and

transforming them into a finished product (Lindsay, A., D., & Lunn, K. ,2003). This

machine-model concept of a process has been applied in many fields of work and study

such as business modelling and systems engineering. This approach is related to both the

business process reengineering (BPR) and business process management (BPM) methods

that began to attract attention towards the end of the twentieth century and into the

twenty-first.

44

In this context, a business process can be regarded as “a set of partially ordered steps

intended to reach a goal” (Feiler & Humphrey, 1993; Ertugrul, A. M., & Demirors, O., 2015).

Other researchers provide more detailed definitions; Al-Humaidan, F (2006) cited both

Davenport (1993) who describes the structure of a business process as “a specific ordering

of work activities across time and place, with a beginning, an end, and clearly identified

inputs and outputs: a structure for actions”, and also cited Platt, D. G., & Blockley, D. I.

(1994) who defined the business process as “the transformation of something from one

state to another state through partially coordinated agents, with the purpose of achieving

certain goals that are derived from the responsibility of the process owner”. The business

process defined in this way must be supported by rich business process modelling and

implementation techniques that can support the achievement of organizational goals

(Warboys, Kawalek, Robertson, Greenwood 1999).

Business processes may be classified into three categories: material processes, information

processes and business processes(Medina-Mora, Winograd et al., 1992) . Material processes

indicate human activities that are performed in the real physical world, while information

processes are activities that deal with information flow and business processes deal with

processing information. The business process related to the business domain must be

formalized into proper framework to be investigated and modelled. Choosing the proper

modelling tools and methods depend on the framework, and because of this the following

section will formulate the business process framework.

2.3.1 Business Process Framework

A business domain consists of several business processes. Exploring the components and

nature of business processes is an important issue in determining the methods required to

model and implement them. This section will explore the business process framework,

including a consideration of all characteristics of any method or approach required to model

and implement a business process. Information system deals with different activities, where

some can be computerised (implanted into software system) and some not. The work here

wants to consider the most proper definition and framework to handle the business

processes of any business domain in order to produce the software system, which leads that

the above definitions cannot be considered for this research work.

Ould (1995) identifies three different types of business process: core, support and

management processes. He also identifies the characteristics of the business process as

45

consisting of activities that are performed collaboratively, and as a cross-functional process

which starts with an agent or customer. Similarly, Loucopoulos (2003) identifies the

characteristics of a business process as consisting of activities, having products and

customers, aiming to achieve a goal and having a horizontal form which crosses the

boundaries of the organization.

Curtis, Kellner & Over (1992), who have dealt with business process modelling, have

determined a conceptual framework for modelling the software engineering process and

business process. They present the business process in terms of four views:

- a functional view, which represents the activities of the process;

- a behavioural view, which represents the ordering of activities;

- an organizational view, which represents the organization’s structure and actors;

- an informational view, which represents the entities within the structure and the relationships between them.

Warboys, Kawalek, Robertson, and Greenwood (1999) which cited by Al-Humaidan, F

(2006) stated that the business process can be defined from different viewpoints, which are

the functional view, organizational view, behavioural view and informational view. The

functional view deals with business process activities and information flow; the behavioural

view deals with the timing of the execution of business process activities, and how they can

be executed; the informational view deals with the informational entities required; and the

organizational view focuses on who will perform the business process activities and where.

The framework by Curtis, Kellner and Over (1992) has covered certain issues of the

business process, but the soft issues and the implementation have not been well-addressed,

which are highly important if we need to produce a workable information system. This

framework if adapted for modelling the business domain, must be modified to handle the

soft perspectives of the business domain and the business processes included in it. The

definition by Warboys (1999) and Curtis at el. (1992) identified the same views of business

process into a framework, and as it argued above it need more tailoring to handle the soft

issues of any business processes of any business domain. AL Humaidan (2006) consider

these frameworks for business process modelling and this work also consider the both

frameworks but after modifying them to be more holistic in order to handle the soft and

implementation views.

46

Furthermore, Lochamp (1993) defines a business process as “a set of partially ordered

process steps, with sets of related artefacts, human and computerized resources,

organizational structures and constraints, intended to produce and maintain the requested

software deliverables”, while, (Johansson, McHugh et al. 1993) define it as “a set of linked

activities that take an input and transform it to create an output”, adding that “Ideally, the

transformation that occurs in the process should add value to the input and create an

output that is more useful and effective to the recipient either upstream or downstream”.

This definition focuses more on the implementation while the other issues are related to

modelling hard and soft issues in the development of the information systems. Al Humaidan

F. (2006) defines a business process as something which “consists of related elements:

ordered activities, constraints and business rules, human and computerized resources, a set

of related artefacts, and organizational structure. These elements interact to achieve the

organization aims and objectives”. This definition is more related to the business process

modelling and need to be more focused in order to deal with the development until a

workable software system will be produced. Therefore, there is a need to acquire a holistic

approach to handle all business processes within the business domain, which is one of the

major issues considered by the present research.

To conclude this section, it is clear that for developing a useful information system, it is

important to understand what they are for. An organization’s business processes must be

well defined and their implementation modelled. It is, however, difficult to be completely

clear about what a business process is. The definition of a business process must deal with

all soft and hard aspects of an organizational business process (Steve W. & Judith Hopkins,

2002; Al Humaidan F. 2006; Sewchurran & Petkov, 2007). This indicates that the definition

offered by Warboys et al. (1999) and Curtis et al. (1992) are the most appropriate for the

purpose of this thesis, and another views will be added to this definition to handle the soft

and implementation perspectives of the business domain. These perspectives must be used

during business domain modelling in order to reflect all business processes and other

related artefacts. This definition, with its various perspectives, will be discussed and

explored further in the ‘Business Domain Modelling’ section below. The modified framework

is considered as a comparative framework to compare between DDD and SDDD in chapter

6.

47

2.4 Business Domain

2.4.1 Business Domain Modelling

The business domain model comprises of structural and behavioural parts (Bennett, 2007).

The structural parts deal with the meanings of business artefacts and the business

relationships between them, and the behavioural parts consider the business processes of

the organization. The model includes all concepts to be used in modelling the business into

a conceptual diagram, such as a class diagram. In agile software development, a domain

model represents the application domain that facilitates communications between business

experts and IT experts. Eric Evan’s ‘Domain-Driven Design’ (2004) introduced ‘ubiquitous

language’ as a communication tool between business experts and IT professionals. This is

considered the backbone of the domain model. All concepts related to the design model are

included in this language. During the creation of the business domain model, the rules of

the business processes must be included and reflected in the model which will be used to

develop the software system, and all views of the business process must also be depicted in

the model. Further details about the domain model are explored in the ‘DDD’ section 2.4,

part 2.

The business environment is not stable and this can affect the organizational business

processes (business domain). It often forces business owners to set standards and methods

to face different challenges in the market and to manage the business process life cycle.

This must be supported by proper tools such as an information system to help in achieving

their goals. It is reported in the literature that many information systems have failed

because of several reasons, where poor business domain modelling is one of the most

critical failure factor (Barjis, J., 2008). Factors include a tendency to concentrate on the IT

technology, rather than on understanding the business processes involved and modelling

them to create a rich business domain model. An exploration of the business process

literature reveals that there is no existing methodology that can deal with an organizational

business process in a way which can facilitate and manage the development of its lifecycle

(Al Humaidan, 2006). There is a need for a methodology that can handle all soft and hard

aspects of the business process (Steve W. & Judith Hopkins, 2002; Al Humaidan F. 2006;

Sewchurran & Petkov, 2007). Al Humaidan’s (2006) work considers this issue and proposes

a framework for business process modelling as a workflow system. However, considering

workflow alone will not deal with all issues related to the business domain processes, since

this approach concentrates on business processes alone, rather than the whole business

48

domain. The business domain is more comprehensive and includes all processes with

related services and other artefacts required to implement the software system. In addition,

Al Humaidan’s (2006) work ends with a model of a workflow system and does not progress

to implementation. This raises the issue that a comprehensive framework is required to

facilitate the process of investigation, modelling and also implementing the business process

to achieve organizational goals. The existing methods and methodologies of business

process modelling deal with specific aspects only. Aguilar-Saven, R. S. (2004) investigates

some of the methodologies of business process modelling, while (Kettinger, Teng et al.

1997) investigates different methodologies of business process reengineering. These

methodologies concentrate on the modelling of business processes, as discussed before, but

not on the modelling of a business domain.

The following sections will review information systems development methodologies and

multimethodology frameworks required for business domain modelling and implementation,

and in part2, section 2.4 will focus on DDD as a dominant approach among these

frameworks.

2.5 Information Systems Development Methodologies and Tools

2.5.1 Definition of method and methodologies

The literature has presented several definitions of methods and methodologies, with no

clear distinction between the two. Either one of these terms have been used in most of the

existing studies. According to Avison & Fitzgerald (1988) a method or methodology is a

“recommended collection of philosophies, phases, procedures, rules, techniques, tools,

documentation, management and training for developers of Information Systems”.

However, few researchers have provided a difference between the two, where methodology

is considered as a more comprehensive concept than a method that is utilized logically for

evaluating the adequacy and reliability of a method. A method, on the other hand, is a

manner with which a task is completed (Checkland, 1981; Vonk, 1990).

A methodology comprises of three essential components, which are, a work breakdown

structure for providing a systematic procedure of executing processes along; techniques to

implement those processes; an advising on handling the quality of the results. A

methodology is a process that depends on various elements such as the human resources

(technical staff, management team) and material resources (software and hardware tools).

The aim of a methodology is to incorporate changes efficiently in the systems via controlling

49

all the operations. For this purpose, the methodologies must be prepared in an

understandable manner, which can be transferred and learned over different development

scenarios (Checkland, 1981).

2.5.2 Definition of information system development methodology

To develop an information system, information systems development methodology (ISDM)

must be used to ensure that all the system’s perspectives are achieved. ISDM is a notional

theory of practice for the information systems development process, and is used by

information systems developers as a guide to the process of intervention into the

information systems environment. Information systems development methodology can be

defined in different ways. Fitzgerald (2003) defines ISD methodology as “a systematic

approach to conducting at least one complete phase of information systems development,

consisting of recommended collection of phases, procedures, techniques, tools, and

documentation aids”. An information systems development methodology incorporates a

world-view, models, methods, techniques, management and training into a coherent theory

to guide the practice of information systems development (Michaailescu, D., & Mihailescu,

M. (2010). The world-view associated with the methodology is due to the influence of the

methodology’s author. However, if the developer and the author are not the same person,

the world-view of the developer will also influence the methodology and its use. The

methodology may or may not be made more efficient with the aid of technology. The views

of business experts are not the same as those of technical people, and this can lead to

communication difficulties between the team members responsible while the information

system is being developed. Therefore, it is important to follow a methodology that can

facilitate the process of information system development.

There are different approaches to classify software development methodologies.

Information system development methodologies can be grouped into soft and hard

methodologies. Hard approaches are originally developed from systems engineering, where

additional activities emerged from industry. Soft approaches came from outside industry by

Peter Checkland, 1981 who developed SSM in Lanchester University, UK. SSM succeeded as

a general purpose-problem solving methodology to handle the messy or unstructured

problems. One classification approach has classified hard methodologies into traditional

approaches (heavyweight) and Agile approaches (lightweight) (Boehm & turner, 2003;

Charvat, 2003; Highsmith, 2001; Wysocki, 2009). Heavy weight like Waterfall (Benington,

Herbert D., 1956, 1983), Iterative Waterfall (Winston Royce, 1970), Waterfall (Bell, Thomas

50

E., and T. A. Thayer. , 1976), B-Model (Birell and Ould, 1985,1988), Information

engineering (Martin & Finkelstein, 1981), Spiral model (Barry Boem, 1988), SSADM (Eva,

1994), Unified Software Development Process (Jacoboson, Booch, & Rumbaugh, 1999),

prototype model (Pressman, 1994), and Microsoft Solution Framework (MSF) model

(Microsoft, 2004). Other classification approach classified hard approaches into models

based on sequential approach like waterfall model, and models based on iterative approach

like prototype model, spiral model, unified process model, Microsoft solution framework,

and agile methods (Predrag Matkovic & Pere Tumbas, 2010).

Other approach has classified hard approaches into structured methodology and object

oriented methodology. The object-oriented methodology deals with modelling the problems

into abstraction in order to be implemented as a software systems. Bennett et al, (2002,

p57) continued to assert that object orientation can model complex information systems

through the conceptual diagrams, and it became a necessary approach to deal with the

system complex requirements. Object oriented approach breakdown the complex system

into small subsystems with less complexity and support the re-use of IS development

models and program codes.

These issues encouraged the development of agile methodologies which are a combination

of soft and hard approaches. Agile methodologies were reviewed in separate section of this

chapter.

2.5.3 Hard Problems vs Soft Problems

While selecting a methodology to solve a problem, a distinction between hard and soft

problems must be considered to guide the selection. Hard problems are considered well

defined in answering the question ‘how’. With hard problems, there is a solution by which

the aims are achieved. Hard approaches to system development have been succeeded in

developing information systems from the technical perspectives. Curtis, 1998 show that

information system sometimes not accepted by user as a solution of spurious problem. This

raise the issue that an alternative approach is required to capture the human elements

(soft) of a system.

Avison & Taylor, 1997 have classified the information systems problem situations into five

classes, depending on requirements structure, problem definition, and their level. They

determined the following five classes of problems:

51

The soft (unstructured) problem is concerned with ‘what’ and ‘how’ questions, and according

to Checkand, 1999, ‘hard’ and ‘soft’ approaches are different in nature and the main

difference between them is that the hard system thinking is suitable for well-defined

technical problems while soft system thinking is more suitable for fuzzy(unstructured)

situations which include cultural and human being issues. According to Avison & Taylor,

1997 hard approaches are applicable for classes 1&2 problems while soft approaches is

applicable with classes 3,4, and 5. Each approach has its strengths and weaknesses. Harry,

1994 compared between hard and soft problems as follows:

Table 2-1: Distinctions criteria between hard and soft problems

52

Based on the above distinctions between hard and soft system approaches, the following

sections will review the related works to both approaches in order to show the applicability

of each methodology belonging to one of the approaches for handling the soft and hard

system issues.

2.5.4 Hard system development methodologies

Tradition methodologies or (heavy weight) and agile methodologies or (Light approaches)

are classified under hard system development methodologies. Under each category, there

are different types of methods or approaches. The following review of the related work will

critically analyse both the ISDM categories (tradition methodologies & agile methodologies)

to address the problem that one reason of information systems failures came from the ISDM

because of the weaknesses of handling the system perspectives ‘hard’ and ‘soft’ and to

show that one methodology cannot handle all the perspectives. Also this review will try to

explore the multimethodology work in order to find their applicability to handle all

perspectives, and then help to eliminate IS failures.

2.5.4.1 Tradition Methodologies (Heavy weight approaches)

Information systems development methods have been used for many years; indeed, since

the 1970s. One of these hard methods is the ‘Structured Systems Analysis and Design

Method’ (SSADM), which was developed by Ashworth and Goodland in 1990. However, this

method came from civil and mechanical engineering and is not popular with programmers.

The reason behind this is that the method places considerable emphasis on planning and a

lot of time must be spent on it before anything is produced. This approach focuses on

developing certain models to construct the information system. From a management

perspective, this approach is good because it allows them to plan and predict the schedule

and budget for the system development. However, it may be argued that because this

approach requires the project manager to plan a lot of the work and activities involved in

the system’s development, this will take a lot of time and then there may be problems in

making any changes to what has been planned. The following are some of the traditional

methodologies utilized in the development of information systems:

1. Waterfall

Waterfall is first introduced by (Benington, Herbert D., 1956, 1987) and modified by (Bell,

Thomas E., and T. A. Thayer. , 1976). Waterfall is a linear framework that comprises of

53

sequential steps for developing an information system (Figure 2-1) (Adenowo & Adenowo,

2013).

Figure 2-1: Waterfall methodology for ISD

The waterfall methodology is segregated into different phases, where each phase is

executed in a sequential manner and cannot be re-visited again. Specifying the

requirements of the business is the first phase. The requirements form the basis of the

information system, after which analysis is conducted and system is designed. After the

designing and development of the system, it is implemented via coding and then tested via

unit and integrated testing to check the proper functionality of the system. The last phase

addresses the operability of the system and inculcates further changes as and when

required, thus maintaining the system. There is no overlapping between these phases

(Adenowo & Adenowo, 2013).

2. Iterative Waterfall

Iterative Waterfall is introduced first by Winston Royce, 1970. This is a prototype framework

that breaks the process of methodology in smaller sections for easy execution of

development process (Figure 2-2) (Munassar & Govardhan, 2010).

54

Figure 2-2: Iterative waterfall methodology for ISD

This model is similar to the waterfall model, however, unlike the traditional waterfall, here

the phases can be re-visited during the development of the information system. After

identifying and specifying the requirements and designing the system, the requirement

phase can be re-visited if there are certain changes in the dynamic market that have further

changed the requirements. As user-specific needs are never constant, this model is effective

in addressing the changing requirements as and when possible. It is also useful in resolving

ambiguous objectives through iteration and provides flexibility in the designs (Munassar &

Govardhan, 2010).

3. Spiral Model

The spiral model is developed by (Barry Boehm, 1988). The spiral methodology is a

combination of both the iterative and linear approaches that is efficient in developing an

information system (Figure 2-3) (Munassar & Govardhan, 2010).

Figure 2-3: Spiral methodology for ISD

55

The methodology starts with the identification of the objectives and alternatives, evaluation

of alternatives and risk management, development and verification of the system and

planning the next iteration. Unlike the other models, the emphasis is laid upon the

evaluation of risks and their effective mitigation. An information system development

process repeatedly follow these spirals (iterations) until the required system is developed.

High amount of risk analysis is performed in this model, which may also lead to higher cost

(Munassar & Govardhan, 2010).

4. B-model

The B-model is developed by (Birell and Ould, 1988). The B-model is an extension of the

waterfall model that ensures the constant improvement of an information system (Figure 2-

4) (Ruparelia, 2010).

Figure 2-4: B-model for ISD

56

This model was developed to ensure that new systems could be effectively inculcated in the

existing information systems. The model separates the development cycle of the ISD

process, wherein the system is developed by following the similar steps of requirement

specification, designing and implementation and testing from the maintenance cycle,

wherein the information system is maintained after its development by following the similar

cycle (Ruparelia, 2010).

2.5.4.2 Agile Methodologies (Light Approaches)

Systems specialists and developers therefore started looking for simpler approaches and

methodologies as alternatives to SSADM and other hard approaches. Agile methods were

introduced, which were declared to be a solution for this situation. These aimed to provide

sufficient processes for any given project but tried to avoid detailed descriptions of

processes. Agile methods or ‘light approaches’ received more interest during recent years as

a compromise solution between heavy weight methods and no development process,

providing enough process for any given project (Ambler, 2002). These methods influenced

by object-oriented programming languages and object-oriented and relational databases.

These methods support the programmers to develop fast solutions and to avoid them going

through detailed design and development steps.

Different researchers define the term ‘agile’ in different ways. Alistair Cockburn, the first

one introduced agile method and defined it as:

There are different agile methods s, which use UML with varying degrees of agility, such as

‘Unified Software Development Process’ (USDP) (Jacobson et al., 1999) and the ‘Rational

Unified Process’ (RUP) (Kruchten, 2004; Manalil, J., 2011)), both of which have attracted a

the attention of developers. Also there are other important agile method like Alistair

Cockburn’s agile method called ‘Crystal’ family of methods (Cockburn, 2001), Jim

Highsmith’s ‘Adaptive Software Development’ methods (Highsmith, 2001) and ‘Feature

Driven Development’ (Jeff De Luca,1997;1999).

57

Agile methods can be modified and changed from project to project. So they classified as a

project base methods. The modification can be done by comparing conceptual model of the

system by its requirements by considering all the related issues such as the cultural

requirements. With heavy weight methodologies, a lot of time spent on requirement

configurations and to get the customer to ‘sign off’ before moving to the design and

implementation. This approach is not working well since the business requirements can be

changed and not stable. This problem caused clients to go for agile methods since

requirements will be depend on the model base and it can be modified as a learning take

place through the project phases. Without stable requirements, a predictable plan cannot

be achieved. This raises the question of how some degree of control may be exerted over

such unpredictability. The new development methods focused more on ‘use cases’ and

‘iterative’ development techniques. Use cases were discussed in the UML section is a piece

of functionality that can support user understanding and provide them with meaningful

value.

In an iterative approach, developing a system consists of short projects called iterations.

The output of iteration will be tested and then all iterations will be integrated into the whole

system. However, it may be argued that there are different types of project where

requirements are so unclear (complicated business processes). For such projects, the use

case approach is not suitable for identifying the right iterations. For this reason, this thesis

believes that techniques from soft systems methodology (SSM) should be added in order to

explore the business domain clearly and provide structure to the situation. This explores the

idea that dealing with business processes from the business domain perspective will

contribute to developing an understanding of the system requirements which can directly

reflect the business domain. Such an approach will allow different stakeholders to converse

in a similar language, thus improving their understanding of the requirements involved in

building the business domain model and implementing it as a software support system. This

view is presented in the domain-driven design framework (Evan, 2004). An agile software

development methodology fits well here because they focus on the business values while

DDD concentrate on the business model to be aligned with the software system. DDD

followed an iterative approach while agile methodologies such as SCRUM or DSDM offer a

project management framework. To manage a DDD implementation project, a combination

of XP (develop a software system), and SCRUM (project management framework) is advised

to be used. This research aims to make further improvements to these methodologies by

developing a new approach which combines SSM with DDD.

58

One of agile methodologies is ‘Extreme Programming-XP’ which emphasises on iterative and

incremental development methods and provides explicit and hands-on methods for

developers. Therefore, extreme programming and domain-driven design are a perfect fit for

each other. There are no conflicts between the values of these two development models,

and while XP is more practical, DDD is more philosophical (Oqvist, 2011). This argument

has encouraged the adoption of DDD as a base approach for the proposed SSDDD, since

DDD is close to agile methodologies.

Another agile methodology is ‘Feature-Driven Development-FDD’ which is developed by Jeff

De Luca (1997). FDD is a management-supporting tool that suggests a specific framing of

the process as well as iterative development, but does not provide guidance in respect to

specific development methods. Other agile methodologies were discussed in the literature,

but it is clear from those reviewed in this section that these methodologies focus on making

the development process shorter than traditional hard approaches. However, none of these,

nor any of the others, have tried to solve the problem of soft system aspects. This supports

the goal of this research, which is to combine methods and techniques from different

approaches. Many of these methodologies, such as RUP(Rational Unified Process) by

(Kruchten, P., 2004) and (Manalil, J., 2011) and USDP (Unified Software Development) by

(Jacksbon,1999), adopt UML as a modelling approach, which has encouraged the proposed

combination of UML with SSM, since it can be utilized to handle the soft aspects of the

system being developed.

2.5.4.3 Related Frameworks

1- Multiview Framework

 Avison and Wood-Harper (1990), developed a multiview methodology for ISD, wherein the

development process comprised of multiple players. The basic concept of this approach is

that information system development is an integrated process where the developers design

and implement the system for the end users by deploying a particular methodology. Both

the soft and hard aspects of building the system are incorporated by working in alignment

with the soft system methodology and Yourdon Systems Modeling (1989). The authors have

developed and modified the framework by using action research method in an academic

setting and comprehends different perspectives and views. However, the framework is not

applicable in all the situations. The multiview methodology is segmented into several

phases, as mentioned below:

59

Figure 2-5: Multiview Framework

The above mentioned phases address to five different perspectives, which is why the

framework is referred as multiview. The model offers a progressive development of the

information system to satisfy the user requirements, by addressing both the technical and

human terms. The outputs of each phase can either be fed to the next phase or work as a

separate output. As per the organizational needs, any order of executing the framework

phases can be followed, while also removing a phase altogether. However, the process of

how to jump from one phase to another, in case where one or two phases are to be

omitted, is not determined by the framework. Also, the framework is unable to provide the

tools and techniques that can be used to develop the information system, and it is not easy

for the whole stakeholders to deal with this methodology specially the business experts

because of the difficulty to understand the technical parts.

60

2- Soft Workflow Modelling (SWM)

Al-Humaidan (2006) developed a framework that aimed at comprehending different

perspectives of hard and soft requirements. The model, soft workflow modelling, was

developed for the workflow of organizational business processes. The researcher has

incorporated both SSM and UML for this purpose, where the focus is laid on SSM, with UML

covering the aspects that SSM cannot.

Figure 2-6: SWM Framework

The soft system methodology, in this framework, evaluates the organizational business

process and investigates whether or not it can be modelled as a workflow system. The

issues that are not handled by SSM, are addressed by UML. The UML looks into the tangible

and technical elements, while the SSM addresses the human aspects. However, the

framework addresses only two major concepts, which are organizational business processes

and workflow system modelling, the rest of the phases have to be managed efficiently to

61

gain maximum benefits. Also, the approach is not evaluated or verified using real scenario

case study, thus imposing a limitation of its actual implementation.

2.5.5 Integrating SSM and UML

Chechland, 1981, 1999 mentioned that SSM is an approach to business process modelling

that can be used for both general problem solving and management of change, and it has

been most successful in the analysis of complex situations where there are different views

about the problem definition (i.e. ‘soft problems’). SSM supports the business improvement

by developing systems models and the activities that must be performed by an organization

to achieve their goals, while UML modelling (use-case) is a requirements engineering

technique to identify the system activities, but these activities are driven from the systems

users rather than the system itself.

There are different previous efforts to integrate SSM with other hard approaches like

structured development methods done by (Keys, P. and Roberts, M., 1991; Lewis, P., 1995;

Miles, R., 1992; Mingers, J., 1988; Prior, R., 1990. Later on, some efforts to integrate SSM

with object oriented were made, (Bustrad, et al, 2000; Steve W. & Judith Hopkins, 2002; Al

Humaidan, 2006; Sewchurran & Petkov, 2007) which executed the integration of SSM with

UML use cases. Integrating SSM with UML is an increasing approach and the work in this

area is essential to determine the requirements specification and the identification of

business processes. The work in this area demonstrates the importance of such integration

for investigating a complex and messy problem situation. Using techniques from hard

approaches alone (e.g UML) is not applicable when the requirements unclear and the

combination between SSM and UML is required to evaluate the requirements from the

perspectives of different stakeholders. Therefore, the business processes will be constructed

in the minds of stakeholders. These researchers illustrated that the combination of SSM

and UML encouraged the SSM exploration of system activities from the system itself and

their conversion into use cases (representing the system activities) from the users’

perspectives (Bustrad, et al, 2000). Combining UML with SSM might help in modelling both

‘hard’ and ‘soft’ system aspects of the business domain to develop IS, which are expected

to reflect business needs (Al Humaidan, 2006; Sewchurran & Petkov, 2007; Bustrad, et al,

2000; Steve W. & Judith Hopkins, 2002). This combination is achieved using use case

diagrams that will accommodate all the knowledge generated by SSM conceptual models

during the business domain investigation phase. Then, the transition from the business

domain model (SSM conceptual diagram) into UML use cases will start. After that, UML

62

diagrams will be modelled using use case diagrams such as the class diagram, which will

represent the main diagram of the business domain model. Tools from the object-oriented

domain (UML), such as class diagrams, activity diagrams, sequence diagrams and

interaction diagrams, have proved to be accepted as modelling tools for modelling business

processes (Fowler & Scott, 2000).

Recent research work shows that the combination between SSM and UML is used to

contextualise the problem space using SSM and developing UML models to solve the

complex problems (Ross Fenning et al, 2014) to design a complicated search engine for BBC

(British Broadcasting Corporation). This recent research effort is fit with what proposed and

done in this thesis work and encouraged the continuation of this research direction.

Other recent works have presented systems thinking-based approach for finding the

requirement in complex situations, by exploring and identifying the challenges of complex

situation requirements gathering to be the requirements nature, the observer role, and the

system environment (Polinpapilinho F. Katina, Charles B. Keating, Ra’ed M. Jaradat, 2014).

These researchers focused on systems thinking approach as a holistic approach for systems

requirements gathering and to consider the system soft perspectives since the system in a

complex environment situation. This work is fit with what the thesis proposed of mixing

different techniques to handle the complex system situation.

Minger (2001) added that gathering understandable, consistent, modifiable, and verifiable

requirements is difficult with the complex situation. Further, to achieve such requirements,

a change in paradigm is required such as an integrated multiple infrastructure through

holistic thinking, as done in this thesis to mix different methods from different paradigms to

deal with complex situation (Minger, 2001). This thesis work adapted Mingers work and

considered mixing of different systems development techniques from different paradigms.

Galvin and Lane (1999) have mentioned that transiting from SSM to UML use cases imposes

a problem as these methodologies are based on different paradigms (‘soft’ and ‘hard’), and

will be difficult for mapping the information gathered by the first methodology to the other

one. SSM is interpretivist while UML is a subjectivist approach (object-oriented (OO)). Using

the objectivist approach through OO modelling methods, the existing problem hard issues

will be handled technically using different UML diagrams, while other soft issues relating to

the organization culture and politics will be missed and this will lead to non-complete

information system. The solution suggested here is informed by Mingers’ (1997; 2001) work

63

on multimethodology or plurality, which is used to show the crossing of positivist and

phenomenological paradigms (SSM versus hard object design methods) to solve the

problematic situation by considering the right actions to do that.

This research considers the practice of combining SSM and UML methodologies, a practice

which may also be referred to as methodological pluralism or multi-paradigm intervention

and research. Sewchurran and Petkov (2007) argue that their work on mixing SSM and UML

is different from past attempts at combining methods, since it is better justified

methodologically as multi-method research in systems thinking and operations research

Mingers (2001), and also because it is formulated as an action research approach.

Sewchurran and Petkov (2007) state that SSM plays an organizing role in their proposed

framework, so such a combination of methods may be considered an enhancement of the

multimethodological possibilities discussed and justified by Mingers (2001). This thesis

argues that the difficulties highlighted by Mingers (2001) about mixing methods from

different paradigms can be avoided through the separation of activities within the SSM and

UML parts of the proposed framework (Salahat et al., 2009). This research therefore

considers the transition from the CPTM of SSM to UML use cases as it’s considered by other

researchers before and a new elaboration technique is developed to do this.. The results

from one stage can be continuously used as an input to the next stage in the action

research project, and this involves a number of stakeholders. It is argued that, through this

adoption of an action research approach, the difficulties expressed by Mingers (2001) can

be avoided.

SSM conceptual model was used to model the activities of the business domain that affect

the business as a whole, while use cases are concerned only with activities that can be

directly supported by a software system. After presenting and reviewing different transition

methods, an appropriate method is recommended for use in this research. The following

section explains how the transition point may be identified, followed by a review of the

transition methods discussed in the literature.

2.5.5.1 Identifying a transition point

There are different techniques and tools utilised by SSM. For the transition purpose from

SSM to UML, it’s important to identify which technique can support this. For this work use

case was considered the most suitable tool to be used for this transition which will support

the development of the software support system for the investigated domain later on.

64

Galvin and Lane (1999) described the process of moving from SSM to OOA to be a top down

to explore the business domain. They were considered the use case description and diagram

is the more appropriate to handle this process. Figure 2-7 represent the transition process

(Galvin & Lane, 1999).

Figure2- 7: SSM to OOA Path

This thesis has reviewed the linking of SSM and UML and the transition methods identified in

the literature. One of these methods has been selected and elaborated for use in this

research, and the revision of this transition method is presented in the following section.

2.5.5.2 Review of transition methods from SSM to UML use cases

Different efforts have been made to link SSM and OOA. For the context and focus of this

research, the linkage of SSM models and UML use cases will be considered. Galvin and Lane

(1999), in their work for the UK Ministry of Defence, identified four transition methods, two

of which considered the transition to UML use cases. The first method is to derive use cases

from the root definition, while the second is to derive them from Brian Wilson’s (1990)

conceptual primary task model (CPTM). These two transition methods are presented below.

1- Extracting use cases from root definition

This method consider the extractions of objects from the root definition (RD) which yields a

few objects to build the object model. This method consider the root definition as a point to

start the business domain investigation using OO approach. This method of transition

consist of the following stages:

1- Start with root definition to identify the purpose and main usage of the system then

to identify a high level use cases set.

2- This required the Business Domain experts to be involved while developing the use

cases set.

65

3- After this, the process will continue using OOA tools and techniques.

According to Galvin and Lane (1999), the advantages of the method are that the OO analyst

not necessary to be professional in SSM; since he will depend on the root definitions as one

major output of the SSM; and the utilization of use cases give a chance to describe the

business domain in details to be used for developing OO models. At the same time, they

highlight the disadvantages of the method to be an indirect transition from SSM which is

required detailed analysis of use cases, may be some of use cases not recognised from the

root definition, and since the extraction of CMs from RD is go as an iterative process which

cannot depend upon to extract use cases. Galvin and Lane (1999) state that the advantages

of this transition method are not enough to ignore the disadvantages, and therefore this

method is not suitable to be considered as a transition approach from SSM to UML.

This thesis agrees with this assessment, since the root definition is still being used to

construct the CMs as an iterative process, and so it cannot be depended upon for the

extraction of use cases.

2- Deriving use cases from the CPTM

 Galvin and Lane (1999) identify eight phases/stages to make this transition. These stages

were presented in table2-2 (Galvin and Lane (1999).

According to Galvin and Lane’s (1999) assessment, this method is better because it is a

natural transition and no paradigm shift in the modelling approach. In addition, they

highlight that the transition depend on the rich knowledge gained from SSM which

represented by different conceptual models including all information required to perform

different activities. So, the conceptual models represent a standard framework of the

business domain to develop the use cases then continue until system implementation. At

the same time, they express that this is an indirect transition and they were considered this

as a disadvantage of this transition method because it requires detailed use case analysis to

understand the real business domain problematic situation.

This research agrees with this assessment, since the eight steps to be followed may be

considered a lot of work to be done, particularly in terms of use case analysis. However, an

elaborating technique has been proposed (Salahat et al., 2009) to enhance this point and to

make it easier for developers of IT systems. This technique is explained in Chapter Four and

will be covered through the illustrative ‘Peer-Tutoring’ case study in the following section.

66

Table2- 2: Stages of transmitting from CPTM to use cases.

Therefore, the CPTM transition method, combined with the elaboration technique mentioned

above, was selected as the best method to use since it accommodate all the relevant

stakeholders’ viewpoints. This method not only for converting CPTM to use cases, but it can

be used to convert individual conceptual model to use cases also.

Different IS publications presents many efforts of different researchers whom tried to

combine SSM with other methods to help the developer to determine an improved

requirements for information systems development (see Mingers, 1995; Bustard, Dobbin &

Carey, 1996; Wade , 2004; Al-Humaidan & Rossiter, 2004; Stowell, 1995; Wilson, 2001,

and others). They discuss the benefits and concerns about how techniques from two

67

philosophical backgrounds may be linked without negating the advantages of each individual

technique (Mingers, 1992). Mingers (1995) agreed that SSM and ISD he mentions that this

will not be a serious problem since there must be a transition approach which lead to a

concreteness and result in action being taken.

Bustard, He, and Wilke’s (2000) work presents an effort to link SSM with use case analysis.

However, their work does not distinguish between architectural modelling, analysis models

and design models. In addition, they do not express the difference in ontological

assumptions between SSM and use case analysis.

Similar to the approach presented in this research, Al-Humaidan and Rossiter (2004)

propose the use of the conceptual primary task model (CPTM), and the direct mapping of

each activity from the CPTM to a use case, as proposed by Galvin and Lane (1999).

However, the research reported in this paper assumes that a use case is a specific use of a

system that is part of a business process. A CPTM is more likely to map to a business

process rather than to a specific use of the system. Al-Humaidan and Rossier (2004) refer

to UML modelling taking place within SSM, but there are no further details provided about

how this idea is implemented or formalized. This research work has considered this point

and also adopts the view that SSM is the guiding methodology and all UML modelling

techniques are embedded within it (Salahat et al., 2009). In addition, an implementation

pattern is embedded within SSM to implement the modelled system, which other, previous

efforts at combining approaches have not done. The conversion method adopted depends

on moving from CPTM to use cases through an elaboration technique presented in Chapter

4.

2.5.5.3 Peer-tutoring illustrative case study

Through this thesis research work, the transition method from CPTM to UML use cases is

considered to be the most suitable transition approach, and this is applied through the

elaboration technique presented here and in Chapter 4. The proposed SSDDD framework is

explained through a peer-tutoring case study which is used to illustrate the conversion

method from CPTM to use cases as reviewed in this chapter. Joseph Ucizi Mtenje (2010), a

postgraduate student in the Department of Informatics at the University of Huddersfield,

selected the peer-tutoring system as a project to be developed using the SSDDD

framework. Through his work, he evaluated the transition method from CPTM to use cases

68

using Galvin and Lane’s (1999) approach with the elaboration technique proposed by this

research (Figure 2-8). This previous research work (Salahat et al., 2009) defined use cases

as abstractions of business activities which can be used to model the business domain

model using UML diagrams through the philosophy of DDD which emphasised on the idea

of ‘Knowledge Crunching’ during the different phases of transition. By combining different

developed SSM conceptual models, anew diagram called the consisious primary task model

(CPTM) will be generated and used to map human activities to UML use case diagrams using

the new elaboration technique proposed by this work (Salahat et al., 2009). The following

figure (2-8) presents this technique:

Figure 2-8: Elaboration Technique of Transition from Conceptual Model to Use Cases

Using Galvin and Lane’s (1999) approach and the elaboration technique presented in Figure

2-8, the transition from the CPTM of the peer-tutoring system to use cases is presented by

the supervised postgraduate student Joseph Ucizi Mtenje (2010) as part of his final project

which lead to the application and evaluation of the proposed framework SSDDD as a

software development approach . The complete application and evaluation were presented

in chapter 5. This is included here to demonstrate how the selected transition method can

work with the proposed elaboration technique. Joseph Ucizi Mtenje (2010) mentions that

the this transition method from SSM CPTM diagram to UML use case diagrams is preferable

to other methods because it covers all stakeholders’ viewpoints, and therefore deals with all

the requirements presented by stakeholders through the root definition phase of the SSM

application process. The phases described below are those discussed by Galvin and Lane

(1999) regarding the process of conversion, combined with the elaboration technique which

focuses on starting with the stakeholders. Joseph Ucizi Mtenje (2010) applied this transition

approach and identified the following phases:

69

Phase 1: Peer-Tutoring System activities scoping and prioritising. The activities of the

conceptual models representing PTS were selected, prioritised, and presented in table 2-2.

Table2- 3: The prioritised activities of PTS

Phase 2: The scope of UML to be identified. Low level activities will be decomposed or

combined and then use cases will be extracted from them. This will be done for those

computerised activities only, while other non-computerised activities will not be converted

into use cases. Table 2-4 represent those activities involved in the transition process.

Table2- 4: PTS activities involved in transition

Phase3: Identify actors to perform the activities identified. The following actors (table 2-5)

were identified at the stakeholders’ definition stage:

Table2- 5: Actors of PTS

 Figure 2-9 shows the actors linked to their respective activities (Joseph Ucizi Mtenje

(2010)).

70

Figure 2-9: System Use Case Diagram

Phase 4: High level use cases to be developed in this phase. The smaller activities will be

the names of high level use cases which are used in the transition from SSM to UML use

cases. Objects belong to each use case will be named by underlined nouns. The following

use cases where determined to represent the PTS. Each is represented as a tabular format.

Table2- 6: PTS use case1 (Select Tutor)

71

Table2- 7: PTS use case2 (Select tutee)

Table2- 8: PTS use case3 (select room)

Table2- 9: PTS use case4 (schedule session)

72

Table2- 10: PTS use case5 (Mark Attendance)

Table2- 11: PTS use case5 (Allocate and reward tutor)

Phase 5: Develop complicated use cases (multi-level). Breakdown the complicated use

cases so that only a few high level use cases are derived from low level activities. The

derived use cases were:

 Table2- 12: PTS high level use cases

Phase 6: Identify top level objects. Objects are represented as classes (table2-13).

Table2- 13: PTS top level objects

73

Phase 7: Map the required (top-level) services into objects, and then the objects are

mapped to business processes and activities. This mapping is presented in Figure 2-10,

which represents the business object model (Joseph Ucizi Mtenje (2010)).

Figure 2-10: Business Object Model

Phase 8: The analysis of the UML diagrams will be continued based on the framework to

improve the application design. Joseph Ucizi Mtenje (2010) cited Lane and Galvin (1999)

whom were mentioned that the advantage of this transition process is that “there is no

paradigm shift in the modelling language; the CM is built from activities while Use Cases

describe activities. This therefore seems to be the most natural transition”. Also they

supported the idea of using SSM components through this transmission increase the

understanding of the conversion process.

74

This work previous work (Salahat et al., 2009) stated that when the SSDDDF is going

through the process of converting from SSM soft language to UML diagrams, it requires

mapping of the activities from SSM conceptual models, after a proper understanding of the

user requirements and problem situation has been gained, to use case diagrams that

represent the functionality of the proposed system. While still maintaining the user

requirements and business activities from the conceptual models in a one-to-one

relationship, this mapping will result in some conceptual model activities being combined

and some decomposed. The use case diagram is part of the use case model which

represents the organisational business process, and it will be the basis for modelling the

object-oriented domain model. The use case diagram provides a hierarchy of business

activities concerning the stakeholder goals that led to the need to develop the system, as

defined in the problem definition in the SSM stage. The conceptual models are arranged in a

hierarchy whereby the more primitive and elementary business activities will be lower than

the others. An chart of the conceptual model will represent the individual business activity

of that part (Salahat et al., 2009).

2.6 Gaps in Knowledge in the Literature

This thesis recognized two gaps in the literature that are addressed below and has

attempted to fill these gaps. The identified gaps are:

1- Eric Evans (2004) maintains that many developers who met them do not like the idea of

having a common language, because the domain experts will find their concepts too

abstract and may not understand the components of the model. However, he argues that “If

sophisticated domain experts don’t understand the model, there is probably something

wrong with the model”. Also, it is imperative for the stakeholders to understand the model

as they are the ones specifying the requirements. Therefore, it is imperative to have a

common language among the stakeholders and developers for high collaboration and

coordination to avoid the IS failures. This is an important argument and this thesis has

considered it in attempting to find an alternative to UL in order to fill the first gap in

knowledge. This research builds on the work done in ‘Domain Driven Design Framework’

(Evans, 2004) but, as the author has disclosed, there is room for improvement in the

‘ubiquitous language’, which is considered as the first gap.

2-Related to this gap, understanding all system aspects (‘hard’ and ‘soft’) requires the

adopted framework to handle all these aspects. However, the problem of understanding the

75

output of development work has already been raised by the author. This raises the

argument that the adopted approach - DDD - is not able to fully address this issue, and that

another enhancement is required in addition to the UL enhancement. This is considered the

second gap, as one methodology or framework may not be enough to develop the system.

Avison et al., (1990) argue that all ISDMs have limitations, and it is expected that these

methodologies can be improved in the future. This thesis has considered this argument and

tried to improve DDD by integrating different tools in a proposed new framework. This

research introduces the new ‘Soft Domain-Driven Design’ approach as an extension to DDD,

which adopts ‘soft language’ (SL) as a complement to ‘ubiquitous language’ in order to

handle the problems explained above. The new ‘interpretive ubiquitous language’ is

developed by the SSDDDF and, to distinguish it from the one discussed by Eric Evans, the

name ‘soft language’ is used, which is denoted in this thesis as SL.

76

 Part2: Literature Review: ISD selected tools

2.1 Introduction

This section explores the different information system development tools such as UML, SSM,

DDD and Sogyo DDD in a comprehensive manner. The different UML models have been

explored and discussed. Also, the implementation patterns of the information system

development is presented and explained. These tools separated here for more descriptive

and focus to be more clearer since they are selected and integrated together to propose and

develop the framework SSDDD.

2.2 Unified Modelling Language (UML)

In 1997, the ‘Unified Modelling Language’ (UML) was introduced and established as a

standard by the Objects Management Group (OMG) to allow developers to describe the

structure and design of the software systems using models (OMG, 2005). UML defines a

number of diagrams that can be used to describe an evolving software system; it does not,

however, describe a method for actually building the software. UML is widely used as a tool

in different agile methods and frameworks for modelling business processes and system

functions. The next section will show the importance of using UML in different agile

methods. ‘Unified Modelling Language’ (UML) was used as for software modelling and design

to represent the ubiquity of object oriented programming through UML when comes to the

design phase (Fowler, M. & Scott, 2000; Flower, M. (2004)). Various different diagrams are

defined by UML, such as the use case diagram, sequence diagram, activity diagram, class

diagram and others. Joseph Ucizi Mtenje (2010) cites Mishra (2004), who classifies UML into

different models as represented in figure (2-12) (Mishra, 2004).

Figure2- 12: UML Models

77

Shoval, Yampolsky & Last, (2006) mentioned that the use case and class diagram are an

important UML-based methodologies tools. Use case is widely used as an analysis tool to

analyse the functional requirements, and the class diagram is used to model the problem

domain. In this thesis, the proposed framework has adopted different diagrams from this

model to represent different system views (layers) as explained above. These include use

case diagrams, class diagrams, activity diagrams, a component diagram (replaced by Naked

Objects implementation pattern) and SSM conceptual models which are mapped to use case

diagrams.

2.2.1 Use case diagrams

A use case is defined by Lunn (2003, p.137-141) as a possible sequence of transactions

performed by a system in a particular environment related to a particular goal to provide a

measurable result for the actors. It can be represented as a diagram called a use case

diagram or through a textual format called a use case proforma. A use case diagram is

made up of three key elements, which are actors, use cases and the relationship between

them. An actor may be a user (person or thing) of the system or another system, while a

relationship is a link between actors who use ‘use cases’, and sometimes a ‘use case’ may

use another use case or actor. A use case is drawn as an ellipse, and the use case

description is represented in a table called a proforma which describes the behaviour of the

use case. The following figure (2-13) represents the use case:

 Figure2- 13: Use Case

The second element of the use case diagram is an actor. An actor is actually not a person

but a role, because one person may have several roles in a system. An actor is drawn as a

stick person:

Figure2- 14: Actor

Description

78

The third element of the use case diagram is the relationship, which is drawn by an arrow

line as follows:

Figure2- 15: Relationship

In this case, the arrow shows that the actor uses the use case. However, there are different

types of links between use cases. These links represents relationships, and there are two

types of relationship:

1- Include: this means a use case must call another use case to perform a function (Figure

2-16)

 <<Include>>

Figure2-16: Include Relationship

2- Extends: this means a use case may call another use case to perform a function (Figure

2-17)

 <<Extends>>

Figure2-17: Extends Relationship

Concise

Description

Concise

Description

Concise

Description

Concise

Description

Concise

Description

<<Uses>

>

79

The use case diagram is used by this thesis as a transition bridge from SSM conceptual

model to UML use case diagrams. The following figure (2-18) represents an example of a

use case diagram:

Figure 2-18: Product Management Use Cases

In order to find the use cases of any investigated domain, this thesis suggests a technique

for converting from SSM conceptual model to UML use cases. This will be explained in the

‘Transitioning from SSM conceptual model to UML use case’ section.

2.2.2 Activity diagram

The activity diagram is defined by the UML (OMG, 2007) as a diagram to model procedural

actions, the sequencing of actions and conditions for coordinating behaviours. Therefore,

the activity diagram describes the dynamic features of the system. It is a flow chart

diagram which represent the flow between different activities (different operation of the

system). To draw the activity diagram, activities, associations, conditions and constraints

must be determined first (OMG, 2007). The following figure (2-19) represents an order

management system activity diagram.

80

Figure 2-19: Activity Diagram of an Order Management System (Tutorialpoints-UML)

The activity diagram is one of the UML modelling tools which has been adopted by this

thesis to illustrate and evaluate the SSDDD framework in Chapters 4 and 5. Different case

studies are used for this purpose.

2.2.3 Class diagram

The class diagram as it was defined by (OMG, 2007) as a diagram to represent the domain

model which can visualize, describe and document the system aspects, and thus construct

the executable code of the software application (OMG, 2007). Class diagram consists of a

group of classes and their attributes, the relations between different classes, interfaces, and

constraints. Class diagram is compatible object oriented programming and it can be mapped

into object oriented programming codes. The following figure (2-20) is an example of a

class diagram taken from the work of students following the ‘Methods and Modelling’

module in 2011, which was used to evaluate the SSDDD framework as a guided learning

approach for teaching ISD. The diagram represents one of the case studies used by the

module - the ‘Combined Studies’ system.

81

-student_id : int

-forename : string

-surname : string

-gender : char

-DOB : int

-address : string

-phone_no : int

-enrolled_course : Student_Course

Student

-module_id : int

-module_name : string

-module_credits : int

-module_type : Module Type

-module_tutor : Tutor

-module_time : int

-module_day : string

Module

-subject_id : int

-subject_name : string

-parent_course : Sub_Course

-subject_modules : Module

Subject

-sub_id : int

-sub_name : string

-sub_leader : Tutor

Sub_Course

11..*

-prerequisites : Module

OptionalCore

**

-course_id : int

-course_name : string

-sub_courses : Sub_Course

Course

1 1..*1..* 1

+updateStorage()

-course : Course

-sub_course : Sub_Course

-subjects : Subject

-modules : Module

-student : Student

Student_Course
1

1

-tutor_id : int

-forename : string

-surname : string

-gender : char

-DOB : int

-address : string

-phone_no : int

Tutor

1

1

1

1

Module Type

+validStudent()

-checkValidUser()

+createModules()

+calculateTimeTables()

System

1

1..*

1

1..*

1

1..*

1

1..*

Figure 2-20: Class diagram of Combined Studies System (students’ work, 2011)

2.2.4 Sequence diagrams

The sequence diagram is a popular UML artefact for dynamic modelling to identify the

behaviour of the system. Sequence diagram purpose is to show and model the logic of the

system being investigated. For business application development, sequence diagrams and

the class diagram are the most important diagrams in the design phase. Sequence diagrams

are used to model the usage scenarios of the system, the logic of methods, and the logic of

services. The following figure (2-21) represents enrolling a student in a university seminar

(agilemodeling.com).

82

Figure2- 21: Enrolling a Student in a University Seminar

The three types of diagram reviewed and explained above have been adopted by the

SSDDD framework as UML diagrams in addition to SSM diagrams. This thesis investigates

the combination of UML and SSM diagrams and the application of these to different case

studies. The transition from SSM to UML use case diagrams is reviewed and discussed in

this chapter, and a discussion of the application of this approach is available in other

chapters.

2.3 Soft Systems Methodology

Checkland, 1981 and other researchers developed a methodology called Soft systems

methodology (SSM) at Lancaster University. SSM is based on system theory which request

to decompose the system into small components in order to study and understand them.

Systems theory is a holistic approach since its concentrate on studying the whole picture of

the system by exploring the relations between different components of the system under

investigation. SSM is not an ISD methodology; it is a problem solving methodology which

was used to investigate problems from different domains such as environmental sciences,

biology, and systems analysis. Different researchers adopted SSM for different applications,

such as the work of Brian Wilson, 1990 at Lancaster University who was used the

methodology to analyse the business information systems. Also another attempt done by

Avison’s, 1990 who incorporated it into systems design work through the methodology

83

‘Multiview2’. Others have made efforts to incorporate SSM with UML (Bustrad, et al, 1999;

Steve W. & Judith Hopkins, 2002; Al Humaidan, 2006; Sewchurran & Petkov, 2007)).

SSM was declared as a methodology to understand and structure the complex messy

situation, by constructing conceptual models of the human activity system (HAS) them

compare them to the real world system. Conceptual models were considered as a potential

real world systems, but not a real representations of the real world system.

So, SSM is a methodology to structure thinking about the system but not to analyse it, and

it is useful since it allow the involvement of different stakeholders whom interesting about

the solution of the investigated business domain problem.

Checkland’s seven stage methodology is represents in Figure 2-22.

Figure2-22: Checkland’s Seven-Stage Soft Systems Methodology

2.3.1 SSM and information systems

SSM was declared as a methodology for problem solving but it was used in Information

System domain specially information system management, strategic information system,

and business analysis. SSM is not for computer Information system design, but to

understand how to think about the problems available in the domain to be computerised.

84

An attempt by Brian Wilson (1990) has been done to model the different stakeholder view

(W’s) to handle all activities of the business domain. This attempt is considered an

extension to SSM and the ‘consensus primary task model’ CPTM was developed to represent

the majority of activities agreed by all stakeholders. This can be constructed by combining

the same activities available different conceptual models (different stakeholders a greed

about them) in order to represent the business domain problematic situation. These

activities will be examined and if any is a larger one it will be decomposed to smaller

activities. Input to carry each activity will be determine and output also in order to

formulate ‘information categories’. This will make the information requirements clearer and

complete without any duplication and shortness.

2.3.2 SSM strengths and weaknesses

The strengths and weaknesses of SSM are linked to two important issue (Paul Lewis, 1995):

 First issue is relating to its ability to handle the complex situation facing people

during the analysis stage; this is good to build the system but may be cause an ambiguity

to the system developer.

 Second issue, it’s a logical methodology starting with investigating the problem of

the business domain, then proceeding to conceptual models development.

Some researchers like Kingston (1995) argues that a lot of inputs and outputs available in

the SSM models without identifying which output belongs to which input. So it requires to

improve the whole system in order to get any specific improvement. This will make it

difficult to develop and implement the soft system model.

This research adopted soft systems methodology to enable investigation of the different

projects used, such as the ‘Peer-Tutoring System’, to a greater depth in the sense that the

models in SSM will help to build up a debate which will enable an understanding of the

requirements of the systems to be developed. It will also help to prepare a use case models

that will aid application development (Checkland, 1989). Using SSM, different stackholders

views can be expressed and this will help to solve the problem through learning rather than

adopting a new solution (Davies & Ledington, 1988, cited by Winklhofer, 2002). Therefore,

the application of SSM to business domain modelling supports project development by

demonstrating requirements more clearly and enabling a better understanding of the whole

business domain and functional system. The resultant software system will be more helpful

85

to users, as it will meet their needs. It also gives the project a good likelihood to be

accepted by different stakeholders

2.3.3 SSM rich picture

Rich picture is a key tool of SSM and is a graphical representation of the whole situation.

Anything can be used in this picture to make the problematic situation clearer.

Developing SSM rich picture required the analyst to be sure that the perception corresponds

with each stakeholder, he understand the situation, and identify other related issues of the

domain like ethical issues and disagreements (Kingston, 1995). According to Checkland

(1990) a rich picture represent a way of asking stakeholders the question “Have we got it

right from your perspective?” in order to be sure that the work in the project is in the right

direction. Rich picture allows the investigator to develop a holistic view about the problem

situation. Figure 2-23 presents an example of a rich picture about classroom interaction

(lecture situation) (Patel, 1995).

Figure2- 23: Rich Picture of Classroom Interaction

86

2.3.4 Root definitions

Root definition (RD) may be described as: “a short textual definition of the aims and means

of the system to be modelled” (Rose, 2002). The main purpose of using ‘Root definition’ is

to determine the purpose of the system and the interested parties. RD is constructed from

the different views of these parties based on their expectations about the system functions.

In other words, root definition can be used to represent the mission of the system and look

at the problem situation from different points of view. Modelling a system using root

definition has been described as a movement from the real world to systems thinking about

the real world (Checkland & Scholes, 1990). Williams (2005) mentions that during the root

definition stage, points of view from the different stakeholders are drawn out from the rich

picture and presented within a structured development process. The following examples

illustrate two root definitions derived from the rich picture presented in Figure 2-24, taken

from Patel (1995), which represents the lecture situation (classroom interaction):

Root definition 2 will be used as an example to extract the conceptual model from as it

represented in the next section.

87

2.2.3.5 SSM conceptual models

Conceptual modelling process represent a step away from the real world modelling and

concentrate on abstractions. A conceptual model is an abstract representation of concepts

(entities) and terms, and the relationships between them. The purpose of a conceptual

model is to convey the meanings of the concepts and terms used by the domain experts

and to find the exact relationship between these concepts. The conceptual model is

extracted from the root definition. The conceptual model represents the human activities

system (HAS).These conceptual models will be the bases from which to link SSM and UML

through use cases. The next section will review the linking process. Figure 2-13 represents

the conceptual model of teaching and learning (Patel, 1995) which was derived from Root

Definition 2 mentioned above.

Figure 2-24: Conceptual Model of Teaching and Learning

2.4 Domain-Driven Design

Domain-driven design is concerned with mapping the business domain into software

artefacts that can be used to develop the final software system. The following sections will

explore this idea and show how it can be related to business domain modelling and

implementation.

88

2.2.4.1 The Software Development Process

The application development process consists of a group of phases and elements to be

followed for developing a software system, and these vary depending on the methodology

or development approach used. There are many approaches for software development and

among these, DDD (Evans, 2004) was introduced to manage the complexity of the

application development process. Michiel Uithol (2009) presents the application

development process in the context of DDD as in Figure 2-25. Understanding these stages is

a major prerequisite to exploring the nature of DDD in detail. The problem domain at the

top of the model represents the basic idea about the final achievement of the developed

application. This will be refined and a requirements specification document will be produced

to be used in the design phase. The design phase will transform the requirements

specifications into an ‘application model’, and the requirements will be refined and adjusted

during this phase to fit with the application model. This will be followed by the preparation

of the ‘application model specifications’ before starting the implementation phase. An

implementation corresponding to the application model will be produced during the

implementation phase, followed by the structuring of codes to reflect the behaviour of the

implemented software system.

In the development process, transformation from the problem domain into an application

model leads to a ‘domain model’. Similar to the previous stages, any refinement in the

application implementation will refine the application model.

Figure2- 25: The Development Process

89

2.2.4.2 DDD Philosophy

A software development project aims to solve a specific problem for a given domain by

developing a successful software system to support the business activities of the domain

and run them successfully. The main philosophy of DDD is that “the focus must be on the

domain and its logic (i.e. the business logic) in any software development project” (Uithol,

2009). This is an important concept, since the activities embedded in any domain reflect the

real business artefacts which must be considered, rather than the technology.

Domain-driven design is not a development method, but it is oriented toward agile

development methodologies and utilizes well-established software design patterns

(Hoffmann, 2009). It is an approach which tries to handle the complexity of software

development by mapping business domain concepts into software artefacts to create better

software by focusing on the domain model and the logic embedded in it (business logic)

rather than the technology. Other methodologies focus more on the technology, through the

software development process, and because of that the resultant models do not reflect the

domain business logic as it is understood by business experts (Evans, 2004). The

complexity of the software development lies within the problem domain, and the separation

of the ‘application model’ and implementation keeps the focus on this problem domain, i.e.

domain logic or business logic (Evan, 2004; DDDC, 2008; van Dillen, 2007). In the

development process, the design phase involves developers and domain experts who

collaborate to produce the application model. Jacopo Romei (2009) summarises the three

words represented by DDD by suggesting that ‘domain’ is what inspires our solutions,

‘driven’ is where we find our solutions and ‘design’ is what provides us with solutions. This

view presents DDD as a way of coping with problematic situations and helping developers to

be good designers. Jak Charlton-thinkddd.com, (2010) describes DDD as an architectural

methodology for evolving a software system that is closely aligned to business

requirements. However, DDD is not focused on how but on what and why, and it is not

always the easiest, or even the best, solution to follow.

This thesis considers this argument and seeks to find a way to make DDD an easier and

better solution in most cases. The core concept of DDD is the development of a ‘ubiquitous

language’ (UL) as a means of communication between business domain experts and

software developers; this is intended to guide and support the extraction of the domain

model which reflects the business activities embedded in the organizational business

process. This model will be used as a communication guide through the remaining stages of

the software system development process. The following subsections explore both the

http://www.thinkddd.com/

90

ubiquitous language and the domain model in more detail, in order to show how they are

connected, how the language is used through the development process, and the nature of

different types of domain model.

2.2.4.3 Ubiquitous Language

2.2.4.4 The nature and the role of the language

If an ideal software development environment is available, domain experts and developers

must sit together in order to discuss different issues related to the development of the new

software. Domain experts have limited understanding of the technical concepts of software

development, and software developers have a technical view of the system which does not

reflect the domain experts’ understanding and requirements. Developers always use

abstraction to support their design and these abstractions are always not understood by the

domain experts. Here there is a linguistic divide, because domain experts describe their

requirements vaguely and developers struggle to understand a domain which is new to

them. Without using a common language to communicate, the developers start translating

to domain experts and domain experts translate to developers and sometimes developers or

domain experts start translating to themselves. This will lead to misunderstanding and

produce inconsistent materials which will affect the development of the domain model

negatively, so that the software which is finally implemented will not reflect the real

business activities. There is therefore a need for a common language to control such

communication and to help in producing a robust model which can be a backbone for this

language. That language can function as a ubiquitous language in the team’s work (Evan,

2004).

Ubiquitous language, therefore, is a communication language between the different system

stakeholders. It helps the software developers, business experts and others to use a

common communication language in writing, diagramming and speech. Ubiquitous language

is designed to ensure that all the team members communicate in an appropriate way and

understand each other. It will help the team to create an understandable application model.

It has been mentioned that the major reason for software system failures is related to poor

business process modelling, which results in production of a poor domain model. According

to Jak Charlton-thinkddd.com (2010), a poor domain model can be produced if the problem

of communication between the team members is not resolved, thus leading to

misunderstanding and an inconsistent model. Furthermore, business process modelling

must consider all organizational business process aspects, both ‘soft’ and ‘hard’ (Salahat et

al., 2009; Al Humaidan, 2006); this comprehensive view will help to model the business

http://thinkddd.com/

91

processes in a proper way and lead to a proper domain model. To achieve this, the

ubiquitous language must be improved by adding all the ‘soft’ artefacts related to the

business processes. This suggests the addition of texts and diagrams as a result of using a

‘soft business process modelling approach’. Soft system methodology (Checkland, 1999) is

a well-known methodology and is proposed for use here as a soft business process

modelling approach. However, this thesis also suggests the use of an alternative language

as a complement to UL, a ‘soft language’ which may offer an improvement to the issue of

UL; this will be discussed in the ‘Alternative to UL’ section.

2.2.4.5 The vocabulary and usage of the language

The vocabulary of ubiquitous language includes the names of classes and operations. It

includes terms used to discuss the exact rules of the model, supplemented with terms from

high-level organizations like ‘context maps’ (Evans, 2004). It also includes the names of

patterns used by the team and applied to the domain model. This is a model-based

language and is used to describe the artefacts of the system, tasks and functionality. Using

the language in the context of implementation will help the developers to point out key

issues, which will encourage the domain experts to find alternative solutions. Using the

language and raising comments when not satisfied will ultimately lead to a complete model

through different iteration steps, and this model will combine simple elements expressing

complex ideas. However, based on the argument proposed above, UL can be improved

further if ‘soft’ artefacts generated by SSM are added to the language; this would enable all

organizational business process issues to be considered in order to develop a

comprehensive domain model which can be used in the implementation of the software

system.

2.2.4.6 Alternative to UL

Eric Evans (2004) maintains that many developers who met them do not like the idea of

having a common language, because the domain experts will find their concepts too

abstract and may not understand the components of the model. However, he argues that “If

sophisticated domain experts don’t understand the model, there is probably something

wrong with the model”. This is an important argument and this thesis has considered it in

attempting to find an alternative to UL.

The domain model is extracted based on the developed ubiquitous language, which supports

the incorporation of all business activities of any given domain into the domain model;

otherwise the extracted domain model will be inconsistent and incomplete. The process of

92

extracting the domain model depends on business logic, but the tools used for modelling the

business logic may not be understood by the domain experts. The development of a

ubiquitous language is designed to enable a common understanding between business

experts and software specialists, and to allow people from all backgrounds to understand

the tools and concepts required for mapping the business activities into a domain model.

Nevertheless, it may happen that some or many of the business experts do not have the

required technical background to apply and develop the concepts of UL as a communication

tool, and this could lead to problems in the development of the domain model. The problem

boils down to the difference between an objectivist approach (e.g., as in class diagram

modelling) and an interpretive approach such as that adopted in the social sciences (e.g., as

in structuration theory Giddens, A. (1984)). Therefore, it could be argued that interpretive

approaches could help in the difficult task of developing a ubiquitous language, and soft

system methodology might help here. SSM is firmly rooted in an interpretive mind set, as

has already been introduced and explained in the previous section. Recently, other authors

(Wang, Q., Chen, J., Wen, H., Liu, L., Lian, J., Bai, M., ... & Pei, Z. ,2014) suggested a

Domain-Specific Language (DSL) as a standard communication tool between the team

members, which aim to address similar problem to what done and solved by this research.

They didn’t use SSM but they tried to be similar to DDD. Chapter 4 will introduce the new

‘Soft Domain-Driven Design’ approach as an extension to DDD, which adopts ‘soft language’

(SL) as a complement to ubiquitous language in order to handle the problems explained

above. The new ‘interpretive ubiquitous language’ is developed by the SSDDDF and, to

distinguish it from the one discussed by (Eric Evans, 2004) the name ‘soft language’ is

used, which is denoted in this thesis as SL.

2.2.4.7 The nature of the Domain model

The domain model represents deep knowledge since it reflects the different views of all

project stakeholders. It is an abstraction of domain knowledge organized in a proper way

and as such, it is distilled knowledge and a backbone of the language spoken by all

stakeholders (the project team members). Stakeholders often have different views of the

model, and this requires intensive collaboration between domain experts and software

developers to create and maintain the model through a ‘knowledge crunching’ approach.

‘Knowledge crunching’ (Evan, 2004) is an extensive exploration of the domain and a

continuous learning experience. It can be achieved through brainstorming, talking,

experimenting, sketching and diagramming knowledge from domain experts, experiences

from current and legacy systems, etc. It is very important to distil knowledge as much as

93

possible to enrich the domain model and to utilize this knowledge in the later stages of

software development. Therefore, the model is a result of communication between different

team members, including business experts, software developers, users and others. From

the technical point of view, the domain model consists of ‘domain-related functionality’ and

‘domain-independent functionality’ (Uithol, 2009). It comprises a group of services to

facilitate the usability of the domain model. The application implementation includes a

separation between domain-independent (service implementation) and domain-related

functionality (domain implementation). Software design must be driven from this model and

thus the model may be considered a model-driven design. Developing a complete and

accurate domain model will help to reduce the complexity of the application model. To be an

accurate domain model, all team members must be satisfied with the functions incorporated

in it (this will include all soft issues related to the team and their work) and to be complete,

all functions related to the domain must be presented in it.

2.2.4.8 Benefits and characteristics of domain model

The domain model helps to improve the usability and testability of business domain objects,

helps the team to communicate correctly while they are dealing with the business

requirements, data entities and process model (Penchikala, 2008), and is easily

maintainable since it reflects the business model. To be a correct and complete model, it

must satisfy a set of criteria which includes the following issues as summarised by Srini

Penchikala (2008). It should focus on a business domain; be isolated from other domains in

the business and other layers in the architecture; be reusable to avoid duplication in

modelling and implementation; be loosely coupled with other layers in the application; and

be abstract and independent of persistent implementation details.

In order to achieve the organizational goals, especially better return on investments in

software development, business units and IT managements must consider a reasonable

investment in business domain modelling and implementation (Penchikala, 2008). This

requires investing in a good team which can demonstrate good business process modelling

skills; good design and implementation skills; experience in object-oriented design and

programming and soft system methodology; and communications skills. A further

requirement here is the ability to develop ‘soft language’ (SL) as a complement to the UL

developed by Eric Evan (2004).

94

2.2.4.9 DDD layered model architecture

Eric Evan (2004) proposed the architecture layers illustrated in Figure 2-26. This structure,

called layered model architecture, aims to concentrate code of the domain model in one

layer (domain layer) and to be separated from other layers (the user interface, application

and infrastructure). It would be difficult to manage or maintain the code related to the

business domain if it were scattered into the user interface, infrastructure and application

layers. If any business rule were changed, this would require changing the code in different

layers; this assumption supports the domain-driven design approach of separating the

codes related to the domain into the domain layer. DDD focuses on the domain layer, and

the components interact with other components in the same or other layers as depicted by

the arrow directions in Figure 2-26. Each layer is specialized to manage different aspects of

the software codes. The model layers and their functions, as presented by Eric Evan (2004),

are as follows:

 1 - User interface layer (also called the presentation layer): responsible for

interpreting the user’s commands and showing the information to him.

 2 - Application layer: responsible for coordinating application activities, such as

navigation between user interface screens and application layers and validation of user

input data before passing it down to other layers of other systems. This layer does not

contain any business rules or knowledge related to the domain, so it is kept thin; it does not

have a state to reflect the business situation and rules, but it can have a state that reflects

the progress of a program or a task for a user.

 3- Domain layer: this layer is the heart of the business software and contains the

concepts of the business domain, business rules and use cases, the state and behaviour of

business entities and information about the business situation (Penchikala, 2008). It can

manage the state of the business situation and contains services which encapsulate the

business domain behaviour but which are not part of the domain itself.

4- Infrastructure Layer: this includes the generic technical capabilities to support the other

layers. It supports the pattern of interactions between the four layers through an

architectural framework. It provides communications between different layers and acts as a

supporting library to other layers.

 Some authors support this layered architecture (Evan, 2004; Penchikala, 2008; Wang, Q.,

et al.,2014), but other authors argue about the direction of interactions from up to down,

95

which prevents interactions between layers from the lower level to those in the upper level

as a refinement process (van Dillen et al., 2007). They suggest another layered structure

called ‘Sogyo’ which is discussed in the next subsection. The remainder of this section deals

with the different authors who support the layer architecture.

Figure2- 26: Common Layered O-O System

Domain-driven design focuses on modelling the business domain to include the different

artefacts required to map it into a software support system. As stated by Srini Penchikala

(2008), based on the domain-driven design approach, a domain modelling and

implementation project includes the following steps which were presented in table 2-14:

Table2- 14: Domain modelling and Implementation project steps

96

The above perspective of modelling and implementing a business domain is similar to other

approaches to software development. The difference here is that there is more

concentration on business domain modelling, which is the main contribution of DDD. This

view indicates that DDD begins after the domain modelling ends. This supports the proposal

of this thesis, which is to add a ‘soft’ perspective to business domain modelling before

starting the DDD approach. The proposed SSDDD framework (Salahat et al., 2009) is

based on Srini Penchikala’s (2008) approach, but may be summarised in the following

steps:

Table2- 15: SSDDDF proposed steps

This may lead to an improvement of the DDD approach. Based on the above procedures of

business domain modelling and implementation, all perspectives of the organizational

business process will be modelled and used to develop the software system. A comparison

between DDD and SDDD was presented in Chapter 7. However, Ramnivas Laddad (2009)

suggests different steps for implementing a domain objects model, in which he focuses

more on domain objects than services in the model. His approach consists of the following

steps which they were presented in table 2-16

Table2-16: The steps of implementing domain objects

97

2.2.4.10 Building Blocks of the Model

DDD determines a set of conceptual objects to be used in the code in order to implement

the domain model. Model-driven design components are the building blocks of domain-

driven design, as presented in Figure 2-27 (Hoffmann, 2009) which is developed based on

the work of Eric Evans (2004).

Figure 2-27: The Building Blocks of DDD

As shown in the building blocks diagram (Figure 2-27), DDD uses the architecture layer

approach, ubiquitous language and model-driven design to extract the domain model from

the business domain. Ubiquitous language is used to extract the model, and model-driven

design is used to express the model as services, value objects, modules and entities. These

names of these objects will be stored back in the ubiquitous language to facilitate

communication in forthcoming stages. Layered architecture is used to isolate the business

domain from other services to facilitate programming, maintenance and any other technical

issues.

98

2.5 Sogyo domain-driven design

 Figure 2-28: Sogyo DDD Application Model

The Sogyo DDD model uses a ‘sunflower’ model (Figure 2-28) (van Dillen et al., 2007), in

which the domain functions are centred in the middle and services outside. In this structure,

the implementation of the domain model is unaware of the services in the structure layers.

The difference between the Sogyo structure and Eric Evan’s (2004) DDD is that the services

are not presented in one layer but in separate entities around the domain model. Also, the

domain model is unaware of the elements in the infrastructure layer (van Dillen et al.,

2007).

The main output of the design is the domain model. The domain implementation is

independent and can operate in isolation. The double lines between the domain model and

services represent a ‘glue’ layer which is equivalent to the application layer in Eric Evan’s

(2004) approach. The function of this layer is to translate actions in order to use the domain

classes.

2.6 Implementation Patterns

SSDDDF suggests the use of Naked Objects or TrueView as implementation patterns.

Pawson (2002) defines the Naked Objects framework as “A set of Java classes that can be

instantiated or sub-classed by an application”. Most business systems today have adopted

the architectural pattern of having four generic logical layers, with new business concepts

having been implemented in all four layers in different forms (Pawson, 2004). The four

99

layers as described by Brown (1995), are presentation layer, controller layer, domain

objects layer, and data management layer. Pawson ,2004) mentioned that the method of

layers was used before that, he argues that relationships must be available between these

layers but it is a complex mapping. This architectural layers model became a generic

through the years and any of each layers can be ab objected oriented behaving.

Naked Objects used an object-oriented user interface to allow the user to see and

manipulate the domain objects’ behaviours for any action. Pawson, 2004 mentions that

domain object was represented as a user icons and all transactions required will be as

options from these icons.

TrueView software is produced by by Evolving Software company registered in England and

Wales in 2006. Using TrueView, the application software is created based on .NET entities(

the classes developed in the UML stages). TrueView implementation pattern is used to

explore the business domains and to create rapid prototypes based on domain-driven

design approach, and the applications produced reflects the domain models. The company

mentioned that TrueView helps to keep business logic clean, concise and focused by having

an object-relational mapping facility for data persistence. The company also mentions that

the application was designed to suit problem solvers, which is why it is being used in this

project. It allows freedom and flexibility in DDD implementation as the interfaces can be

customised, security capabilities can be added and it offers data persistence to an

application. As TrueView’s behaviours are controlled through attributes, it creates entity

classes and relationships between them that help to keep the whole system working and

deliver efficiency in the system”.

In addition to the above patterns, the SSDDD framework is compatible with other

implementation approaches if developers so choose. In Chapter 5, regarding the ‘School

Liaison Coordination System’, the developer preferred to go for another implementation

approach that he had mastered well before, and the system was implemented smoothly

without any problems.

100

Chapter 3: Research Methodology

3.1 Introduction

There are different definitions of research and among of these a research is a scientific and

methodical search of a data about a specific problem under investigation. A research

methodology is referred as the blue print of a research, where the methods to conduct a

particular investigation for the purposes of resolving an issue are explained and justified. It

can be understood as the science of examining the process of conducting an investigation.

Under a methodology, one evaluates the phases that are deployed by the researchers to

reach specific outcomes. Also, the rationale to choose the particular methods for a specific

analysis is also explained under methodology.

This chapter, therefore, presents the research methods appointed in the current study to

answer the mentioned research questions. The entire investigation depends on the research

methodology and it is imperative to deploy research methods for acquiring the final

interpretation of the research. This chapter comprises of research paradigm, research

approach, research design, data collection and analysis, validity of results and ethical

considerations.

3.2 Research Paradigm

The purpose of a research is to discover and construct several ideas for the perspective of

resolving an issue. It is an examination that attempts to gain knowledge, analyze issues at

hand and solve it by acquiring insights into the depth of problems (Jupp, 2006). A research

paradigm enlightens the general methodology of the research (Johnson and Christensen,

2010). There are two paradigms in the broad spectrum of research namely, positivism and

interpretivism. Positivism is a structured method that comprises of logical deductions

backed by observations. By considering and using this paradigm, the researchers will adopt

a large social sample to collect general information instead of focusing details of research,

and it’s depends on raw numbers and numerical data (Creswell, 2013). Interpretivism is the

research philosophy, which is subjective where researchers interested to highlight the

research problem through presenting different facts and figures about it (Creswell, 2013).

101

3.2.1 Research Paradigm Adopted

This research utilizes the paradigm of interpretivism as to answer the research questions, it

is imperative to gather engaging information and induce theories from that information. This

investigation unequivocally trusts on a few angles, for example, individual support, notion,

and feelings of the members, which required the vitality for uncovering the data. As the

present research aims at investigating and implementing a multimethodology framework

that addresses hard and soft requirements, qualitative and interpretive research is deemed

fit to evaluate the proposed framework. For this purposes, action research is deployed

where the idea is to develop the theoretical and make it practical, whilst simultaneously

taking the practical and making it theoretical. The theoretical part includes the development

of a new framework (‘Systemic Soft Domain-Driven Design Framework’ (SSDDDF))

combining soft system methodology, unified modelling language (UML) and the Naked

Objects implementation pattern in the context of domain-driven design (Salahat et

al.,2009). The practical part refers to the evaluation of the framework using different real

world case studies from the researcher’s university and through using the framework for

teaching the module ‘Methods and Modelling’ for postgraduate students, and followed by a

comparison of the proposed framework with others reviewed in the literature chapter.

3.3 Research Approach

Research approach defines the method with which a particular investigation is carried out. It

describes the philosophy that drives the direction of the investigation (Morgan, G. A., et al,

2006). Quantitative and qualitative are the two research approaches that are most

extensively deployed in practice (Thomas, 2003).

102

3.3.1 Research Approach Adopted

The qualitative approach is described by Gupta & Gupta (2011) as formal and dynamic to

approach to utilize formal and informal instruments for collected data . It comprises of

thoughtful inspection of the subjective information acquired from human experiences to

identify the meaning behind them and analyse the information (Brace et al 2006). As the

present research implements a framework for information systems development, which is

adopted as a teaching approach for the learning of DDD, SSM, and UML. To estimate the

benefits of the proposed framework, it is imperative to gain the feedback of the ISD

developers and stakeholders, and therefore, engaging information can be extracted through

the means of qualitative data. Addition to that, the feedback of learners gained through the

qualitative and quantitative data.

3.4 Research Method Selection

This thesis adopted action research method incorporating qualitative methods in order to

gather the data. Case studies and interviews are triangulated and used as a surveying

qualitative research methods. The use of a case study approach in information systems

research has been addressed and supported by Gummesson (2000) while Avison (1990)

and Wood-Harper (1985) also justify the use of action research for information systems

research. Gummesson (2000) mentions that it is difficult for researchers to gain reasonable

access to a company to investigate and develop a detailed case study. This is where action

research is of great benefit, as it supports the selection of case studies from the

researcher’s own work environment in order to gain easy access through the investigation

phases. Therefore, this research utilizes educational environment to evaluate the efficiency

of the proposed framework. This is further described in the following sections.

3.4.1 Action Research

Action research is one major and important type of research methods which defined and

explored by different researchers as follow:

103

Action research is an approach to support practitioners to find out different ways in order to

provide quality within the industry under study. Koshy (2010) provided a list of action

research features which was presented in table 3-1.

Table 3-1: Action Research

As stated before, this thesis selected and used action research process. Action research is

adopted rather than the tradition research because it’s capability to deal with the practical

concerns regarding the information system developments, also gather data in a clear way,

support the future considerations, and helps to identify a successful solution (Parkin, 2009;

Reason and Bradbury, 2008; Greenwood and Levin, 2007). Based on this view, this process

allows the implementation of required changes within a multimethodology framework that

104

addresses both hard and soft aspects. So, it is the appropriate tool to be used for the

practical nature of this research work.

This research has therefore adopted action research as a general methodology through

which to proceed through the evaluation of the proposed framework for the development of

information systems in an educational as well as business environment. The reason behind

adopting action research is that both the researcher and supervisor are from the academic

field and would therefore be part of the research work. The entire process of action research

presented in Figure 3-1 which is adopted from Kemmis & MC Taggart (2005) Action

Research Spiral.

 Figure 3-1: Conceptualization of the Research Methodology through Action Research

Data gathering

through

literature review

for identifying

‘hard’ and ‘soft’

criteria

Developing and evaluating the framework

through interviews with stakeholders and

developers (students) of ISD projects.

Applying proposed technique to practical

case studies. Teaching ISD using the

proposed framework

Reflections on

the benefits of

the proposed

framework and

comparison with

existing

frameworks

105

3.4.1.1 Action Research in the Field of Information System Development

According to Mansell (1991), action research is highly prominent in analysing the issues and

performance of information system. This approach to research is efficient at problem-

solving activities that adds knowledge and also implements in practice.

Baskerville & Wood-Harper (1996) have observed that action research has been widely

deployed in the field of information system development, where researchers have studied IS

in organizational settings. Action research is a method that offers potential inputs in

improving the practical aspect in the domain of information systems. It has also been

utilized in the organizational and educational spectra as a contributing and reliable research

method. Action research is therefore, relevant in the context of practice in information

system development (Baskerville & Myers, 2004).

3.4.2 Literature Review in Action Research

A literature review of works related to information systems development was undertaken.

Issues related to business process, business domain, ISD methodologies, domain-driven

design and ISD projects in educational institutes were reviewed. This review shows that

there is a need for a multimethodology to handle certain issues related to the system being

developed, since these methodologies are categorized separately into hard and soft

approaches. The required methodology should be able to handle both hard and soft issues.

Ignoring soft issues, and weaknesses in information systems education, are considered to

be the main reasons for software system failures. This supports the argument that a

multimethodology framework is required and this was proposed in the next step. The

literature review presented in Chapter 2 illustrates why the SSDDD framework was

proposed.

3.4.2.1 Proposal of Soft Domain-Driven Design Framework as a Multimethodology

Framework

The proposed SSDDDF is based on DDD, which is a dominant framework for ISD. A soft

layer is added to DDD by combining tools from DDD (UML and implementation pattern) with

SSM. The proposed framework is described using the illustrative case study in Chapter 4.

The proposed framework is further described and evaluated through different illustrative

case studies in Chapter5, and through using it for teaching the module ‘Methods and

106

Modelling’ for further reflections on each component of the evaluated framework. The

practical case studies and the module ‘Methods and Modelling’ are described in section

3.4.3.

3.4.2.2 Evaluating the framework by comparing it to others in the literature

This phase in the action research is commenced in the last, proceeded by case studies and

interview methods, wherein a comparison between SSDDD and other DDD frameworks is

done via literature review research , the feedback gained from case studies evaluation, and

feedback from teaching the module ‘Methods and Modelling’. The SSDDD framework is

compared with other dominant DDD frameworks as it is declared at the beginning of this

thesis that DDD is used as the basis for the proposal of the new SSDDD framework as an

extension and improvement of DDD. The comparison criteria are formulated based on the

consideration of each framework for information systems development. Also, the SSDDD is

compared with other four frameworks and methodologies including SSADM, Multiview,

SWF, and Agile methodologies to generate a holistic comparison results in order to show the

capabilities of SSDDD compared to this sample of methodologies. The comparison and

evaluation findings are presented in Chapter 6.

3.4.3 Case Studies Adopted in Action Research

The developed multimethodology framework is applied to real problems by considering

practical case studies. The researcher, as a lecturer working in university for many years,

and the supervisor also, therefore encouraged the evaluation to take place in the academic

environment, in association with different levels of students. Thus, the evaluation of the

framework is undertaken as a software development framework. As this environment also

enables the evaluation to relate to developers at different skill levels, projects by

undergraduate students (junior developers) were chosen to do such an evaluation first,

followed by those of postgraduate students (developers). This would allow a good

comparison to be made between them and enable clear reflection on the framework for

further improvements in the future. For this purpose, two undergraduate projects, ‘Peer-

Tutoring System’ and ‘Students’ Association’ systems are used and presented in the

following sections. And another two postgraduate projects ‘Peer-Tutoring System’ and the

‘Schools Liaison Coordination System’ are used and presented in the following sections. The

comparison between these results will be presented in the last chapter of this thesis. Also,

teaching ISD module ‘Methods and Modelling’ for a group of postgraduate students in

107

Informatics department is utilized and used as a further evaluation to gain feedback and

reflection on each tool of the framework and the framework as a whole.

3.4.3.1 Peer-Tutoring System

In the previous works (Salahat & Wade, 2009) it has been mentioned that a number of

information systems were required to support the department, one of which was a peer-

tutoring system at the undergraduate level to improve the programming modules. The aim

was to design and implement a peer-tutoring system for the introductory programming unit

in the Department of Informatics, in order to support the students and reduce the number

of failures. One of the problems facing students and lecturers in the university was the

difficulty of understanding and mastering the skills required to write and run computer

programs successfully. The system was suggested as a means of improving the pass rate at

the university and also increasing students’ confidence and knowledge when teaching each

other during study sessions. Furthermore, this system would reduce workload for lecturers,

as the time they spent clarifying a point to a single student could be reduced by enabling

students to discuss such points amongst themselves at the tutoring session, thus leaving

the lecturer free to concentrate on preparing lessons for the next classes. A number of

researchers have suggested that peer tutoring can be particularly useful to support this type

of learning because it allows learners to learn and support each other (Goodlad & Hirst,

1989). It is also beneficial in helping students to learn and practice the required skills more

actively in a setting that encourages them to be more active and intellectually engaged

(Gardner, 1993). Other researchers (Miliszewska & Tan, 2007) have reported the problems

of teaching a programming course at Victoria University in Australia and they propose such

an approach to enhance the delivery of this module. Xiaohui, H. (2006) raises the difficulties

of teaching programming courses in Chinese universities and discusses different modern

incorporation strategies to solve this problem; these strategies include concept mapping,

peer-learning and e-learning methods. However, the solutions proposed by other

researchers show how to overcome the difficulties of teaching programming units by

concentrating on delivery methods only, without investigating all the soft and hard system

issues involved in solving such a problem (Miliszewska & Tan, 2007; Xiaohui, H. ,2006). In

this thesis, a peer-tutoring system is developed using the SSDDD framework to support and

improve the teaching process. This solution aims to enhance students’ understanding, which

may reduce the percentage of failures in this module. The development of PTS as an

undergraduate project by junior developers (students studying an IT major) is presented

first in section 5.2; this is followed by its further development as a postgraduate project by

108

MSc Information Management students in section 5.5. These projects are developed using

SSDDDF in order to enable an evaluation of the framework as an information systems

development (ISD) approach.

3.4.3.2 Schools Liaison Coordination System

The liaison coordination system was another system required as part of the school intranet

by the School of Computing and Engineering in the University of Huddersfield. This would be

a normal database system to replace an EXCEL one. Students’ applications for admission

received at the school were being sent to the Recruitment Coordinator on a monthly basis in

the form of an MS Excel report consisting of hundreds of records and very precise

information for analysis. It was quite time-consuming to analyse this data and to make

comparisons against previous years. The school needed the new system to take these Excel

reports and generate cumulative reports to provide analysis of applications by grouping

them across subject areas, as well as to integrate a contacts database for additional

information to compare targeted schools year by year. Section 5.4 will describe how this

was undertaken as a postgraduate project by an MSc Information Management student

using the SSDDD framework, thus enabling an evaluation of the framework as a software

development approach.

3.4.3.3 Student Association System

In Ajman University of Science and Technology, where the current researcher is a lecturer

in the IT College, the Student Association System (SAS) is a system required to manage

various activities of the Transportation and Student Affairs Departments. The objectives of

SAS were to help the students’ association to manage and organize students’ activities and

requirements. These included managing the election process (to choose the association’s

members) and producing the activities schedule. The SAS system would be managed by the

Student Association Department in the university and accessed by many users (university

departments and students). Section 5.3 explains how this system has been developed by

junior developers (undergraduate students studying an Information Technology major)

using the SSDDD framework.

3.4.3.4 Methods and Modelling Module

The module ‘Methods and Modelling’ is an information systems design module for Masters

level students doing MSc Advanced Computer Science and MSc Information Systems

Management in the Department of Informatics, University of Huddersfield. This module is

taught on 2011 using the proposed framework SSDDD as a further evaluation to gain data

109

and reflections on the framework it’s tools. All of the students arrive on the module with

some background in modelling, but those on the MSc Advanced Computer Science course

tend to view modelling as high-level programming, whereas those studying for MSc

Information Systems Management tend to think in terms of business models. This presents

the challenge of moving students into a deeper understanding from different starting points

and with different preconceptions about the nature of the subject. For a number of years

this module has been taught in block mode over five full days. This mode of delivery was

chosen to attract part-time students who were in full-time employment. Over the years, the

profile of students on the courses has changed from predominantly working adults to

predominantly full-time international students. It became apparent that the intensive nature

of block week teaching caused difficulties for this latter group of students, who often arrive

in the UK for the first time just a few days before their first class. Restructuring the module

to be delivered over a full semester to full-time students presented an opportunity to

rethink the modes of delivery and assessment. A ‘scaffolded’ approach has now been

adopted, using an integrated framework, SSDDDF, that has been developed and applied

through the few years ago(Steve, W., et al,2012). Section 6.2 present how the proposed

framework SSDDD is used for teaching the ‘Methods and Modelling’ module and how it is

evaluated through teaching process as an ISD approach.

Therefore, soft systems approaches were categorized under action research approaches. In

this thesis, action research has been adopted through the use of soft system methodology

as a guiding methodology for the proposed framework. The use of different cases selected

and explored within an educational background and using the framework for teaching ISD

has allowed the current researcher, as a lecturer in the educational environment, to act as

facilitator and action researcher during the research period. The different techniques used to

gather data will be explained in the following sections.

3.4.4 Investigations, Interviews and Discussion in Action Research

3.4.4.1 Using different practical case studies for evaluating SSDDD

Different practical case studies have been used to show how the framework can be used to

model and implement business domain processes as a domain-driven design system leading

to a software system. Practical case studies have been undertaken by graduate and

postgraduate (MSc) students in the school (e.g. School Liaison Coordination System and

Students Association System). Following the application of the various stages of the

proposed framework, the investigation proceeded by interviewing the different stakeholders

110

to gain reflections on the benefits of the framework. This included interviewing the

developers (students) of the information systems used in the different case studies. For the

liaison coordination system case study, the school staff in charge of admission were

interviewed. Evaluation and reflections on the application of the framework are presented in

Chapter 5. The following sub-methodology was used to accomplish the following:

1- The description of the framework, with its illustrative case study, was explained to

students through a workshop in order to guide them in how to use and apply the

framework to a real practical case study. This was done for undergraduate groups in

one workshop, and for postgraduate students in another two separate workshops

conducted at different periods of time.

2- Descriptions of the different case studies were provided to the students and they

were asked to start work by applying the framework based on what they had learned

in the workshop and from the case study. They could also use different techniques in

their investigation and ask advice from the current researcher as facilitator for their

projects. The students were given the following case study projects: School Liaison

Coordination System, Peer-Tutoring System and Students Association System.

3- The students were asked to reflect on their application of the framework in terms of

how it had been used and how it had facilitated their job of developing the

information system. They were also asked to record in their reflections any

difficulties they had faced during all stages of applying the framework. This was

achieved by conducting interviews with the students.

4- For evaluating the proposed framework in School Liaison Coordination System, the

school staff (stakeholders) were interviewed, where conclusions were drawn

regarding the benefits of proposed system and further improvement options.

The application of the framework, the students’ reflections and stakeholders’ feedback are

presented in Chapter 5.

3.4.4.2 Using the module ‘Methods and Modelling’ for evaluating SSDDD through

Teaching ISD

The module ‘methods and Modelling’ is for Master students in the Informatics department in

the University of Huddersfield. This module has been used to show how the framework can

be used to teach ISD and how each tool is used and practised to model and implement

111

business domain processes as a domain-driven design system leading to a software system.

This part of evaluation and reflections is presented in Chapter 6. The following sub-

methodology was used to accomplish the following:

1- The description of the module ‘Methods and Modelling’ and the proposed framework

to be used in teaching ere explained to students through a workshop at the begining

order to guide them in how to learn and apply the framework to a real practical case

study during the period of studying. This was done for all Master students either Msc

Information System Management or Msc Advanced Computer Science. Also, methods

of teaching and assessments tools were explained in order to let all student to be

aware about the assessments tools.

2- A group of practical case studies were distributed to the students and they asked to

go through all of them and each student to select one case which he feel happy and

comfortable to use it as practical case study during the semester class work. They

requested to submit the work at the end of the semester .

3- Frequent in-class surveys were designed and used to evaluate the students’ weekly

satisfaction. This technique guided the teaching process in order to improve

students’ learning. This method depended on open-ended questions to obtain the

students’ feedback. These feedback were considered as a reflections from the

students about the tools they studied and practised during the semester.

4- At the end of the course the students were asked to write a short reflective essay

including a discussion about the module and how they used the techniques to

develop their projects. This technique allowed the students to give their feedback

about the techniques that they have been used.

5- The analysing of students final course work to recognise if any mistakes available in

their work. The purpose here was to find the reasons behind these mistakes and if

they were related to the framework’s techniques. This helped the researcher to

determine how to suggest an agenda for improving the SSDDD framework.

6- A questionnaire is designed to further evaluate the proposed SSDDD framework as

an integrated approach for information systems development. The design of the

questionnaire is focused on the various tools of the framework and the contribution

of each for achieving more understanding and practical skills.

112

Teaching the module using the framework, the students’ reflections and feedback are

presented in Chapter 6.

3.4.5 Combining Evaluation Results from Different Stages of Action

Research

Different evaluation methods were used to evaluate the framework as an information

system development approach in the educational environment. The framework can also be

applicable in the business environment. All the evaluation results are combined and

presented in Chapter 7, together with discussions and a consideration of the achievements

of this research. The limitations of the research work undertaken and recommendations for

future work are also presented.

3.5 Methods for validating the research findings

Gray, Kouhy and Lavers (1995) mentioned that validity as well as reliability are important

to be considered by the quantitative study. They determined four important parameters to

insure the quality of the qualitative study. These parameters are validity, transferability,

credibility and conformability. As the present study is qualitative in nature, the correctness

of the results are validated using the following parameters namely validity, reliability,

credibility, conformability and transferability.

3.5.1 Reliability

Reliability is used by the research to measure the correctness of the instrument used in data

collection (Shenton, 2004). It’s important to be sure that the instruments used for data

collection is reliable and this can be assured if the instrument can produce a consistent and

stable measurement. In this research study, the data is gathered by conducting interviews

with students (IS developers) and stakeholders (school staff), and from applying the

practical case studies by undergraduate and postgraduate students (IS Developers). Also

data is gathered from (postgraduate students) through teaching the module ‘Methods and

Modelling’ using the proposed framework. In-class frequent surveys, Analysis of students

class work, Reflective essays, and feedback questionnaire. In this study, it is the

responsibility of the researcher to ensure that every respondent will respond the entire

questions of the interview or other technique used either at the beginning of the research

study or after end of case study application. Also, to be insure that these answers are

consistent in all research phases.

113

3.5.2 Validity

The study must deploy the validity technique to insure that the results obtained by the

research study are reflects the requirements of the research (Shenton, 2004). This study

managed the validity by framing the interview questions or other techniques in such a way

that it contains concepts that are relevant to the research questions and the knowledge

explored by the literature review and feedback collected through the application of the

practical case studies. The validity concept is important since it will affect the research work

finding in a positive way if it maintained properly, otherwise the effect will be a negative

one.

3.5.3 Credibility

Donnelly, J., & Trochim, W. (2007) mentioned that the results of the qualitative study can

be judged by participants only who can say that they are credible or not. So, the

researcher’s credibility is the reflector’s individual that would judge or predict the credibility

of the research. For the qualitative research, the credibility considered the results of such

research type as credible or believable. (Patton, 2002). In this research project, the

responders are students (IS Developers) and stakeholders (School staff) whom able to

judge the results of this research are believable and credible. This will be summarised in

their feedback about the application of the framework SSDDD through different practical

case studies.

3.5.4 Transferability

Transferability refers to the generalization of the results obtained from the qualitative

research. A qualitative research support the researcher by providing them with solid

descriptive findings which may be it possible to transfer it to other settings, times and

persons and even other kinds of phenomena (Patton, 2002; Trochim and Donnelly,(2007).

This research study considered transferability through applying the same framework

SSDDDD to develop different practical case studies. The scenario applied is transferred from

the first to second, third, and fourth practical case studies.

3.5.5 Conformability

Confirmability is defined by (Trochim and Donnelly,2007) and (Chilisa and Preece ,2005) as

the confirmation degree of the results of the study. To achieve this issue, the data

collected must be checked and re-checked for many times. For this study, the data

114

collected from the literature review to initially develop the framework is checked many time

to be assure the validity of the soft/hard issues criterial derived are suitable to develop the

framework based on them. Also, the data collected after the application of the framework is

checked many time to provide proper reflections about the proposed framework SSDDD.

3.6 Ethical considerations

The ethical considerations are very important during the research study since the

researcher must protect the participants in the study and the outcome trustworthy is

important also to be considered. Silverman, (2013) mentioned that the ethical issues of the

qualitative research are very important since the researcher seeking details information

through the interviews and other adopted tools, and Creswell, (2013) argued that the

ethical considerations must be continue during the whole research project phases. Orb et

al., (2001) stated that these considerations are very important because the researcher must

assure that he can gained the required access and how to control his effect and behaviour

on the participants. The researcher (investigator) must be moral by getting permissions

from all respondents and explaining for them the reasons behind this investigation and

everything will be treated confidentially either the data or the results of the research Maxcy

(2003). According to Ulin et al., (2012) there are three ethical principles must be considered

while conducting qualitative research. These are autonomy, beneficence, and justice.

Autonomy principle stated that it is up to the participant either to participate or not and we

must respect his/her choice, while beneficence refers to the researcher ethical actions to

increase the benefits of conducting this research. In the other side, the justice is considered

the balance between the benefits issues and the risk of the stakeholders of this research.

Finally, it is the responsibility of the researcher to maintain the confidentiality of the results

gained from this research and to consider the ethical use of them. Regarding to both

universities, they allow these studies since they are part of the curriculum requirements and

they concentrated on major point that these projects supposed to go smoothly as other

students not included in this study. Also, they requested participants to deal with any used

data about the university with top confidential.

This research considered the ethical issues and applied different procedures during the

research process. For the undergraduate students in Ajman University, the students who

selected me as a supervisor for ” Peer-Tutoring System” and “Students Association System”

projects are gathered for a workshop. During the workshop, the projects and the proposed

framework SSDDD descriptions were handed and explained to them with other related

115

issues. The ethical issues were considered and it became clear for all of them that their

work is very important and their final grades will not be affected by their opinions about the

proposed framework. So, they will apply the framework and their feedbacks are trustworthy

and will be considered. Also, the evaluation of their projects and the grades will be given to

them by a defence committee not by me only.

The same thing done with the postgraduate students in Huddersfield University and my role

was as a co-supervisor for practical projects and teaching assistant while conducting the

module ‘Methods and Modelling’. The students became confidence to do the work since they

became sure that nothing will be negatively affected their work and their final grades.

116

Chapter 4: Systemic Soft Domain Driven Design

Framework (SSDDDF)

4.1 Introduction

The proposed framework (SSDDD) is based on the multimethodology framework, which

suggests the combination of diverse methods for the same business intervention (Minger,

2000). It is a multi-method framework that guides the developer through an investigation of

a problematic situation and determine its appropriate solution. The purpose of this chapter

is to ensure that a comprehensive understanding is achieved for facilitating the modelling

and implementation of the domain-driven business processes as an information system. The

framework has been developed by appraising and synthesising relevant information from

the literature related with different methods and tools used for information system

development. It is evaluated through a series of ‘action research’ case studies, as it

incorporates action and reflection through the participation of all the stakeholders.

Research cannot be a discrete event, but is a process that has phases with activities to be

performed; this research process consists of four generic phases (Minger, 2000).

1- Appreciation: To appreciate the problematic situation and understand the reasons

behind the existence of the problem that is faced by actors/stakeholders.

2- Analysis: To analyse the output of the appreciation phase and the techniques used in

order to understand how and why they are available.

 3- Assessment: To interpret the results and asses different alternatives in order to

improve the problematic situation.

4- Action: Recommend changes for improving the current situation by reporting the output

results.

For this purpose, the case studies taken are related with the development projects at the

researcher’s school. The first three case studies focus on the development of a peer-tutoring

information system and an information system for the schools ‘Schools Liaison Coordination

System’ and ‘Students Association System’. The stakeholders involved are part of the school

and participate in daily activities related to the case studies. This chapter will explain the

proposed framework in relation to an illustrative case study (peer-tutoring system).

117

The proposed SSDDD framework (Figure 4-1) is focused on the modelling and

implementation of domain-driven business processes as an information system. For

developing this framework, SSM is utilized as a guiding and learning methodology with an

incorporation of embedded techniques including UML and an implementation pattern (Naked

Objects). The development and implementation process is carried out in different stages,

which represents the movement from SSM conceptual models to UML use cases. Here,

domain-driven design philosophy is adapted to generate ‘soft language’ as a complement to

ubiquitous language that is provided as an input to the stages. The implementation pattern

is used after the generation of the final refined change report, which is an input to the

implementation process.

The next section presents the proposed framework followed by the evaluation of identified

problem using SSM, which consists of three activities equating to the appreciation, analysis

and assessment steps of Minger’s generic model (Sewchurran & Petkov, 2007). Domain

model generation takes place by using UML modelling techniques, since SSM lacks the

techniques for taking actions (Sewchurran & Petkov, 2007), and this is equivalent to the

action step in Minger’s generic model. In this framework, both domain modelling and

implementation are equivalent to the action step in Minger’s generic model. Thus, the

proposed framework satisfies the generic process for conducting action research in business

intervention.

4.2 Overview of the proposed framework (SSDDDF)

The proposed framework, as presented in Figures 4-1, 4-2 and 4-3, consists of four phases,

where each phase is a composite of several activities. Figure 4-1 illustrates the proposed

SSDDD framework, Figure 4-3 represents the conceptualization of the framework, and

Figure 4-2 represents the logical processes embedded within it. The peer-tutoring example

will be used to show the application of the framework. This case study was suggested and

practised by the researcher himself, then reapplied as undergraduate and postgraduate

projects under the supervision of the author for evaluating the application of the framework

by different developers. There three figures are first demonstrated followed by their

explanations.

118

Figure 4-1: The SSDDDF Model

Figure 4-2: SSDDF Logic

119

Figure 4-3: The Conception of SSDDF

The details of the above presented framework are explained in the following sections by

using the peer-tutoring system (PTS) as a case study as along with exploring other

examples from different researches. This case study aims to apply the proposed framework

(SSDDDF) to the design and implementation of a peer-tutoring system for the introductory

programming unit in the Department of Informatics. The framework integrates soft system

methodology (SSM), Unified Modelling Language (UML), and Naked Objects as a domain-

driven design implementation pattern. The application of the framework starts with the pre-

SSM stage, and then moves on to the SSM application that resolves the problem faced by

the stakeholders.

4.2.1 Pre-SSM Phase

Pre-SSM phase includes the identification of the problem and its analysis with the

stakeholders. This phase facilitates the SSM investigation of the problematic situation to

deploy the implementation of SSM in the school environment. The initial investigation with

the determined stakeholders will provide high clarity and understanding to the developers.

120

In other words, it is expected beneficial to start the SSM investigation based on the results

of the pre-SSM stage.

4.2.1.1 Initial problem identification

The problem in a specific area must be determined initially before starting the process of

the investigation. Therefore, this stage deals with the initial problem identification, which

identifies the roots of the problem and its possible solutions. In the peer-tutoring system

case study, the problem is identified to be as follows:

“The problem is focussed on the weaknesses of students in the programming language

module, which results in a high percentage of failures. It is proposed that adopting a peer-

tutoring system will provide the tutees with extra programming skills that may further

reduce the failure percentage”.

This initial identification fuels the investigation of next step, which deals with stakeholder

roles analysis.

4.2.1.2 Stakeholder roles analysis

The stakeholder role analysis aims to identify the team members of the project along with

their roles. Therefore, the roles of all the parties involved in the problem investigation will

be clarified to avoid any conflicts and also to facilitate the further proceedings undertaken in

the other steps.

For PTS, the following are the needs of the respective stakeholders:

 Peer Tutor – looking for teaching experience, money and reference certificate.

 Peer Tutee – seeking the opportunity for extra help.

 Lecturer – seeking to reduce workload; need to refer weaker students.

 Management – need to reduce failure rate.

4.2.2 SSM Application Phase

SSM is the guiding methodology adopted in the current research. As shown in Figure 4-1, a

rethink is involved regarding steps 2-5, which includes the application of SSM for evaluating

the problem. SSDDDF techniques are utilized to model the domain’s business processes,

which is further used to generate a change report including the modelled business domain

and its implementation procedure. The output of the SSM stage is offered as an input to the

‘soft language’ of SSDDDF. Soft language introduced here acts as a complement to the

121

ubiquitous language of DDD introduced by Eric Evan (2004). It is an ‘interpretive ubiquitous

language’, which includes the output of SSM applications in addition to UL components to

facilitate communications between the different stakeholders. This language is therefore, an

important part of SSDDDF as it represents the communication tool between the different

stakeholders. A detailed discussion on this subject is presented in Chapter 2, in the

‘Ubiquitous Language’ and ‘Alternative to UL’ sections. The SSM application phase consists

of the following steps:

4.2.2.1- Investigating the problem situation using rich picture model

A rich picture is a drawing that graphically illustrates the issues expressed by people,

change processes involved in a resolving those issues, the consequences of changes on the

people or stakeholders, the working climate, and conflicts and structures within the change

process (Williams, 2005). Anything can be included in a rich picture, where it is used to

support the overall understanding of the organisation’s situation, goals and structure, and

the emerging issues and their repercussions.

Thus, the purpose of drawing a rich picture is to informally capture the main entities,

structures and several views of the investigated domain, including stakeholders, operational

processes and the connection between these artefacts . A rich picture must be rich with

information to assist a person, who may or may not be an outsider, in understanding the

complexity of the situation captured during the enquiry process (Checkland & Poulter, 2006,

p.24-26). The following figure (Figure 4-4) is a rich picture of PTS drawn initially.

Figure 4-4: PTS Rich Picture

122

Another example is presented in Figure 4-5, which portrays a rich picture of the student

accommodation system in a university (Lewis, 1992).

Figure 4-5: Rich Picture of Student Accommodation System

4.2.2.2- Modelling the relevant system using root definition

Root definition (RD) may be described as: “a short textual definition of the aims and means

of the system to be modelled” (Rose, 2002). Root definition is used to determine the

purpose of the system, which is built from the comprehension of different parties’

perspectives regarding the expected functions of the system. In other words, the

functionality of root definition is to explore the problematic situation of the business domain

based on different stakeholders’ views. Modelling a system with the assistance of root

definition has been described as a movement from the real world to the perceptions of

systems about the real world (Checkland & Scholes, 1990). Williams (2005) mentions that

during the root definition stage, viewpoints from different stakeholders are drawn out from

the rich picture and presented within a structured development process. According to

Jeremy Rose (2002), the format of a root definition is as follows:

 “A system to do X, by (means of) Y, in order to Z”

123

This format will allow the investigator to understand “what the system will do, how it is to

be done, and why it is being done”. The following is an example of a root definition taken

from a hand out by Jeremy Rose (BIT Department, Manchester Metropolitan University):

The conceptual model(CM) is derived from RD which will be used to represent the human

activity system (HAS) or model. Sometimes HAS derived from the consensus primary task

model (CPTM). This model represents natural activities, some of which can be implemented

as an information system while the others cannot.

The initial root definition of the peer-tutoring system (PTS) is identified as follows:

“To develop a peer-tutoring system for the Informatics Department for selecting peer-tutees

and peer-tutors, scheduling the times of tutoring sessions based on the availability of

rooms, tutors and tutees, managing the benefits of tutors and reporting the progress of

tutees to the department in order to increase the self-confidence of first year programmers

and reduce failure rate within the availability of resources required”.

The next step is to test the root definition through Checkland’s mnemonic CATWOE

(Customers, Actors, Transformers, Worldview, Owners and Environment). The testing for

PTS is given below:

C – Customers: People (tutors and tutees) who will be affected by this PTS system.

A – Actors: People involved in this project (current researcher and supervisor).

T – Transformation: Shows the movement from input to output. In this case, the output is

the peer tutoring system that is to be used by the students.

W – Weltanschauung (world view): This presents the perceptions taken from the root

definition addressing the worth of the current project. This project represents the users’

views about the system’s benefits and negative feedback.

124

4.2.2.3- Modelling the relevant system using the conceptual model

A conceptual model is an abstract representation of concepts (entities) and terms, which

also determines the relationships between them. The purpose of a conceptual model is to

convey the meanings of the concepts and terms used by the domain experts. It further aims

at identifying the true relationship between these concepts. The conceptual model, also

referred as the consensus primary task model (CPTM), is extracted from the root definition

and therefore, represents different stakeholders’ views. The model works as a foundation

through the conversion from SSM to the UML use cases model. The conceptual models for

PTS are presented in Figures 4-6, 4-7, 4-8, 4-9 and 4-10.

Figure 4-6: CM of Management View

Figure 4-7: CM of Lecturer’s View

Figure 4-8: Tutees’ View

125

Figure 4-9: Tutors’ view

Figure 4-10: Combined CMs (CPTM)

4.2.2.4- Comparing the CM with the real world

The conceptual model, as an abstract representation, has to be tested for validation by

forming a comparison with the real world (the current organizational process). The

comparison utilizes the activities, organizational goals, objectives and structure using rich

picture, root definition and the conceptual model. If the organization has no business

domain process model, then the conceptual model can be used as a basis from which

domain model can be created (Bustard, Dobbin & Carey, 1996).

In the current scenario, for PTS, there is no real world model to use in comparison with the

one being developed. In this case, the developed conceptual model is considered as the real

world system model under investigation. This will be used later on as a basis for modelling

the PTS system using UML tools.

4.2.2.5- SSDDDF soft language development

Soft language is the first output of SSDDDF. It consists of all the documents and diagrams

representing the business domain, and functions as a communication tool between different

126

stakeholders. The proposed framework revealed that the models developed using the pre-

soft systems methodology (Pre-SSM) and SSM phases could provide useful input to the

process of developing a soft language (SL). SSM helps the developer to gain a deep

understanding of different stakeholders’ perspectives, which is an essential component of

the soft language as it provides the adequate interpretation of the ubiquitous language. In

this case, the PTS soft language consists of the following components: initial identification of

the problem, stakeholders of PTS, rich picture, root definition, different conceptual models

and CPTM.

4.2.3 Post1-SSM Phase: Object-oriented domain modelling using

UML

The conceptual model (CM) or consensus primary task model (CPTM) represents a general

view of the domain’s functionality. The decomposition of the CM into subsystems will take

place by using a subsystem description table (Bustard, Dobbin & Carey, 1996) also, each

subsystem activity will be represented in an activity description table. There is a close

similarity between conceptual model activities and use cases, which leads to a

straightforward conversion process. A new elaborating technique is used to examine any

activity that has to be converted to a use case; this is represented in Figure 4-11. This

chapter demonstrates this technique and its deployment in the illustrative PTS case study.

Also Chapter 5 presents the technique through the evaluation of different case studies. This

stage consists of the following steps:

Figure 4-11: Converting SSM Conceptual Diagram to Use Case Diagram

4.2.3.1 Building a subsystem description and activity description tables

A subsystem description table is prepared for each subsystem, which includes a subsystem

number, name, heading and activities. Then, an activity description table is prepared for

127

each activity, including a subsystem number and name, activity name, preceding and

following activities, preconditions, input and output data, tasks, business rules and

constraints, post conditions, required skills and capabilities, role name and performance

criteria. This requirement is essential if the system is large and for simplification needs

segregation into subsystems (Al Humaidan, 2006). As PTS is not a large system, there is no

need to break the system into subsystems, and therefore the next step is to convert the

activities into use cases.

4.2.3.2 Moving from SSM Conceptual Model to use cases

Activities of the conceptual model must be tested to determine their goals; some of the

activities can be combined and some can be decomposed. The activities and their goals are

tested and mapped to UML use cases as one-to-one relationships. All the use cases are

combined in the use case diagram, which consists of use cases and their actors. The use

case diagram is a part of the use case model, which represents the organizational business

process and forms the basis for modelling the object-oriented domain model. Lastly, all the

activities requiring information system are selected as use cases. Based on this process, the

following use cases are determined for PTS:

The initial use case diagram is presented in Figure 4-12; this is modified in Chapter 5 on the

basis of the new application of PTS during the evaluation of SSDDDF.

128

Figure 4-12: Initial Use Case Diagram for PTS

4.2.3.3 Use cases analysis and modelling

The use case diagram presents a hierarchy of business activities by considering the goals of

stakeholders. The respective goals highlights the system being requested as per the

problem definition during the SSM phase, which needs to be developed. Each use case is

described using a textual format template (use case proforma), and is modelled by using

UML activity diagram, sequence diagram and class diagram. The activity diagram is used to

model the functional, informational, behavioural and organizational system perspectives.

The sequence diagram is used to model the interaction between the use case objects (the

dynamic aspects of the system). Lastly, the class diagrams represents the static and

organizational structures of each use case.

For PTS, the details of each use case are represented by a use case proforma. According to

Saraj Din (2009), a use case proforma consist of multiple items’ descriptions, which is

presented in table 4-1:

Table4- 1: Use case proforma items

129

However, this format can be simplified if some of these fields are deemed to be

unimportant.

The following are the samples of simplified use case proformas for PTS.

Table 4-2: Add New Tutor Use Case

Table 4-3: Add New Tutee Use Case

Table 4-4: Add New Room Use Case

130

Table 4-5: Create Schedule Sessions Use Case

Table 4-6: Identify Reward Type Use Case

Table 4-7: Update Attendance Record Use Case

4.2.3.4 Developing activity diagrams

Activity diagrams are an integral part of the domain model, which is used to implement the

information system. Activity diagrams present the stages of the business process or the

software process in a sequential manner. The business process may be carried out by

people, software components or computers. Each diagram shows the activities embedded in

131

any use case within the use case diagram that represents the complete system. The

following activity diagrams are the examples from PTS.

Figure 4-13: Add a Tutor Activity Diagram

Figure 4- 14: Add a Tutor activity diagram

Figure 4-15: Identify Tutor Reward Type Activity Diagram

132

4.2.3.5 Developing class diagrams

According to Lunn (2003, p.19-20), a class diagram is a collection of all the classes forming

a structure of the system. It also demonstrates the relationships between the classes. Class

diagrams are developed to model the behaviour of all use cases; these will be combined

together in one class diagram called the analysis model, which represents the system in a

comprehensive manner (Oliver & Kent, 2009). The resultant model is converted to a design

model with the addition of designing aspects required to create the object-oriented domain

model. This is achieved by associating the business logic identified in the use cases with

classes in the class diagram. SSDDDF considers the class diagram to be a major part of the

domain model that can be used to generate the programming code through the

implementation pattern. The following is an initial class diagram for PTS, which is modified

in Chapter 5 by re-developing PTS as an evaluation of SSDDDF using a postgraduate

student project.

Figure 4-16: Class Diagram of PTS

133

4.2.3.6 Generating the changes proposal

A ‘changes proposal’ is generated to improve the domain model, which includes all the

models developed during the previous stages as well as guidelines for using them in the

implementation stage. The SSDDD framework includes a re-examination of the previous

stages to refine the operations performed in Pre-SSM, SSM and Post1-SSM. It is essential to

be sure that the exact changes required have already been well-modelled as a domain

model. SSM focuses on the generation of the required change report, which can then be

recommended for management actions (Checkland & Poulter, 2006; Checkland, 1999;

Checkland & Howell, 1998). Thus, the domain model must be modelled, wherein the

changes to be made are identified and implemented, and the problems encountered are

resolved (Dick, 2002). After achieving this, the PTS, a prototype software, will be ready for

further improvements and implementation to serve the programming module. These issues

will be discussed in Chapter 5, since PTS is re-investigated by Ucizi Mtenje (2010) as a

postgraduate project.

4.2.3.7 Generating the final refined changes report

The report generated in the previous section will be matched against the results of previous

stages until an adequate final report is achieved. This includes an evaluation of drawbacks

in previous stages that requires modifications and refinements. Finally, the PTS must be

monitored and refined to meet the dynamic or new requirements.

4.2.4 Post2-SSM Phase

4.2.4.1 Domain model implementation

The DDD implementation pattern (i.e. Naked Objects) is used in this stage, as it is critical to

start the implementation before refining the proposed modelling report. The domain model

(mainly class diagram) is used as the prototype for the required information system.

However, as per the preferences of the developers, the domain model can be replaced by

another adequate implementation pattern such as TrueView. To implement PTS, a Naked

Objects implementation pattern is used, though an alternative implementation pattern is

presented in Chapter 5.The following are the screen shots of Naked Objects implementation.

134

Figure 4-17: Naked Object Implementation - Tutor Attendance

Figure 4-18: Naked Object Implementation - Edit

4.2.4.2 Refining the implemented software system

The implementation results are matched with the refined modelling report and if any

deviations arise, changes are made to resolve the emerging issues. This step is presented in

the SSDDDF diagram in Figure 4-1 as “Rethink 6-7”. For PTS, the implementation must be

evaluated by the users (students, tutors, lecturers and administration). Any necessary

modification must be incorporated and cross-checked with the requirements based on the

logic framework.

135

44.2.4.3 Exiting and reflecting on the application of the framework

Exit implementation and refinement are executed when an adequate information system

has been attained. Then, a reflection on the role of each component of the framework will

be done. Reflection refers to the outcome obtained or the conclusions extracted from the

actions performed. Finally, lessons learned from combining SSM, UML and the DDD

implementation pattern will be recorded to guide further applications. The following section

presents reflections and concluding remarks based on the first application of the framework

that uses peer-tutoring system as the case study. Further reflections are derived in Chapter

5.

4.3 Concluding Remarks about SDDDF

This work focuses on the proposal and development of a multimethodological framework

that can handle both soft and hard issues of business domain process modelling and its

implementation as an information system. The new proposed framework is developed based

on the idea of domain-driven design (DDD) and soft systems methodology (SSM). A ‘soft’

perspective has been added to DDD to form ‘soft domain-driven design’. The approach can

be described as a systemic framework for business domain process modelling and

implementation. The framework comprises of guiding steps through various key stages in

the development process. It has been evaluated and further developed in an action research

program. The example of a peer-tutoring system (PTS) case study has been provided to

show how the proposed framework can be applied to a real problem situation. The proposed

framework offers the following benefits:

1. It provides a higher level of understanding and clarity to all the stakeholders as the

framework successfully applies both the hard and soft requirements. The soft

language developed by restructuring and modifying the ubiquitous language

facilitates the communication between all the stakeholders and thus provides more

clarity. Understanding the business needs and inculcating them in the development

of information systems contributes to the successful compilation of the system

without any failure. Therefore, the framework performs efficiently as it understands

the needs of all the stakeholders and further incorporates changes on the basis of

the feedback received at the later stages.

2. The failure of information system emerging due to high complexity, is kept at

minimum. As determined by Xia & Lee (2005), the information system is complex as

136

it addresses both technological challenges and organizational issues, which are not

handled efficiently, and thus results in failure. Not only the current framework

addresses the stakeholder’s views and issues, it addresses the hard components

(technological concerns), thus fulfilling all the system requirements. It further follows

a systematic approach to fulfill the mentioned objectives, thereby reducing the

complexity and information system failures. The previous systems are unable to do

so (Xia & Lee, 2015).

3. The framework is effective in managing and handing the changes. As mentioned in

the previous sections, the framework comprises of a ‘changes proposal’ that

addresses the dynamic changes and needs of the system and stakeholders as well.

The changes are managed in an effective manner with the use of SSM, which used

for both general problem solving and management of change. The framework has

been most successful in the analysis of situations where there are different views

about the definition of the problem (i.e. the views of different stakeholders such as

tutors and tutees).

The existing methodologies were unable to accomplish the same, as discussed in

Chapter 2 (literature review). Further evaluations are presented in Chapter 5, and in

Chapter 6 the framework is evaluated through comparing it with different ISD

frameworks.

137

Chapter 5: Evaluating SSDDDF as an ISD approach

Through Different ISD Projects

5.1 Introduction

While commencing the present research work, the School of Computing and Engineering at

the University of Huddersfield was planning to start an information systems development

project using SSM and UML techniques within an agile framework to propose

recommendations for developing an intranet for the academic school. The department had

an operational intranet but this was not widely used, and therefore, professed the need for

an inventive method.

For this purpose, an information systems strategy was initiated to investigate to develop the

means of developing an intranet that is able to support the university’s mission and

departmental goals. Initially, use cases were used as the primary fact-gathering technique,

but certain limitations in this approach led to a more thorough SSM-based analysis of the

situation. It is argued that the techniques of SSM can assist the developers in identifying a

richer set of use cases, however the developers with a full use case model still encounter

several challenges. The current research emphasises on the object-oriented design and the

view that all business behaviour identified in the use case model should be encapsulated as

methods in domain objects. Thus, a student object should be a collection of data pertaining

to the student details and all the behaviours that may be applicable to a student. Domain

driven design refers to these as 'behaviourally-rich' domain objects (Evan, 2004).

A number of software frameworks have been developed, enabling the programmers in

constructing prototype applications directly from a behaviourally rich domain model that is

implemented in an object-oriented programming language. Prominent amongst these is the

Naked Objects framework (Pawson & Mathews, 2002). The Naked Objects framework, as an

implementation pattern, has been chosen as one of the SSDDD framework components.

There were different information systems to be developed in the intranet project, two of

which were the peer-tutoring system, and a school liaison coordination system for the

Recruitment Coordinator in the School of Computing and Engineering (as explained in

Chapter3 and 4). The postgraduate students were explained the respective projects, and

were allowed to select the suitable one. They were then acquainted with the SSDDD

138

framework that can be adopted for fulfilling the needs of these projects. The same process

was followed with undergraduate students, who had opted to try the framework to develop

their graduation projects. All these projects, including both ‘undergraduate student projects’

and ‘postgraduate student projects’, were selected for the present evaluation due to the

difficulties involved in applying this framework to real business projects amongst the market

companies. These projects were explained the methodology chapter 3, in section 3.4.

This chapter presents the gradual application of the proposed SSDDD framework over three

years to different student projects at both undergraduate and postgraduate levels. Section

5.2 presents the early stages of applying the framework in the peer-tutoring project, at

undergraduate level. Section 5.3 will present the ‘Students’ Association System’, which is an

undergraduate project, and section 5.4 presents the application of the model to the

postgraduate ‘Schools Liaison Coordination System’ project for the Recruitment Coordinator

at the School of Computing and Engineering. Section 5.5 presents the application of the

model to the postgraduate ‘Peer-Tutoring System’ project, which has also been used as an

example while explaining the framework as well as an undergraduate project. The

framework is redeveloped here to benefit from the learning process of SSM and to solve the

problems of the undergraduate students, as their skills are less proficient than those of a

postgraduate developer. These projects are already explained in the methodology chapter3.

 5.2 Undergraduate Project: Peer-Tutoring System

As aforementioned in Chapter 3 and 4, action research is used in order to evaluate the

framework as a development approach in an iterative manner by using students’ projects at

different levels. This section describes an undergraduate student project focusing on the

peer-tutoring system, in which junior developers/undergraduates have adopted SSDDDF as

a development approach. The undergraduates have limited practical experience comprising

of their study in university or what they have learned and practised by themselves. This is a

group work project and their feedback is used to make further improvements when applying

and practising the framework in other projects. Later, the framework is applied as a

development approach within a postgraduate student project, using the same and different

domain objectives. The other undergraduate project (SAS) is undertaken and discussed in

parallel with this project.

139

5.2.1 Pre-SSM Phase

5.2.1.1 Initial problem identification

The undergraduate ‘Peer-Tutoring System’ was selected as a group work project by

adopting the SSDDD framework. Simultaneously, another project is selected, which is

explained in the next section. The methodology adopted in these evaluations is an iteration

process that intends to identify the problems encountered in this project and determine

solution to support the later projects. Thus, these two parallel undergraduate projects are

expected to support the following projects undertaken by postgraduate students. They will

learn from the mistakes made by previous students and try to avoid them; this is because

at the heart of SSM is an enforced learning process, which is the main purpose of using it as

a guiding methodology. Since the current researcher is a lecturer in the IT College of Ajman

University located in UAE, he was assigned to be the supervisor of this project, which took

place during the second academic semester of the academic year 2008-2009, between 1st

February and 1st June, 2009. The group of undergraduate students were asked to use the

newly developed SSDDD framework to execute their projects. At that time, the framework

was new and had been first published in the Innovation08 conference, in November 2008,

at Al-Ain University, UAE. The first version adopted the workflow approach instead of

domain driven design, but it was subsequently modified and was presented in the

UKAIS2009 conference in March 2009, at Oxford University. The second updated version of

the framework was developed at the end of the semester, after considering the feedback of

the students, and then submitted to the WASET Conference in Amsterdam during

September 2009. The students started the project using the first updated version of the

SSDDD framework. Their work and feedback are presented in the following sections.

5.2.1.2 Stakeholder roles analysis

The initial analysis of stakeholders determined the following stakeholders and their roles:

 Peer Tutor – looking for teaching experience, money, experience and reference.

 Peer Tutee – looking for extra help in programming language.

 Lecturer – seeking to reduce workload; need to support students with

weaknesses and improve their skills.

 Management – need to reduce failure rate and to support both tutors and tutees.

140

5.2.2 SSM Phase

5.2.2.1 Investigating the problem situation using rich picture

Any element, representing the actors in a system, can be included while forming a rich

picture as there are no specified rules. Different shapes can be used, such as pictures, to

represent a particular situation. For example, the crossed swords are used to represent a

conflict situation and arrows to show relationships. Based on this, the undergraduate

students investigated the problem situation of the peer-tutoring system and came up with

the rich picture presented in Figure 5-1 below:

Figure5- 1: Rich Picture of PTS

5.2.2.2 Modelling the system using root definition

Root definition represents the mission of the targeted system and addresses the problem

situation from different viewpoints. This is then tested using Checkland’s mnemonic

CATWOE for specifying the stake holders of the system and their purpose. It is compulsory

to identify the root definition according to SSM to explain important issues in the system for

commencing appropriate modelling. The root definition is used to construct a conceptual

model (CM) or consensus primary task model (CPTM). For the peer-tutoring system, it was

identified by the undergraduate students as follows:

141

 “To develop a peer-tutoring system for the Faculty of Information Technology to select the

peer-tutees and peer-tutors, to schedule the time of tutoring sessions based on the

availability of resources required such as rooms, tutors and tutees, to manage the benefits

of tutors and to reduce failure rate”.

5.2.2.3 Modelling the system using the conceptual model

This stage is explained in Chapter 4, showing how the root definition is used to extract the

conceptual model, which represents the views of different stakeholders. In this case, if the

modelled root definition is an accurate representation of the system, then the conceptual

model will describe the system activities that might take place. The following conceptual

models (CMs) were developed by the PTS group based on what had been done in previous

works.

Figure5- 2: CM of Management View

Figure5- 3: CM of Lecturer’s View

142

Figure5- 4: CM of Tutees’ View

Figure 5-5: CM of Tutors’ View

The above models are then combined into one model called the consensus primary task

model (CPTM). The CPTM represents the points that are agreed by all. For example,

corresponding to the need to schedule peer tutor sessions, stakeholders might have

different priorities about optimum times but all reached to the same conclusion. Other

examples of consensus points include the need to identify peer tutors (volunteers, best

students, future teachers), the need to identify tutees (volunteers, or refer weakest

students) and the need to reward tutors (money, good references, separate certificate,

credits).

143

Figure5- 6: Consensus Primary Task Model (CPTM) for PTS

5.2.2.4 Comparing conceptual models to the real world

The developed conceptual models were considered as actual system models because PTS

was not yet available and so there were no real life models available to compare with the

above developed CMs. The SSDDD framework describes the role of soft system

methodology, which requires the investigator to compare conceptual models with actual real

world models. As in the present case, there is real world system, the developed conceptual

model is used as the real world system model. Therefore, the students used the developed

conceptual models as a basis to model the PTS as a domain model. The other output models

from SSM and the CPTM are the major components of soft language and were used to

generate the domain model.

5.2.3 Post1-SSM Phase: Moving from Soft Language (SSM Phase) to

Domain Model

5.2.3.1 Moving from SSM conceptual model to UML use cases

The SSDDD framework has adopted UML to model the domain model. For this purpose, the

conceptual model is first converted into use cases and use case modelling. The extracted

use cases are then used to develop a UML sequence diagram, class diagram and activity

diagram. The next subsection will show the conversion from CM to use cases.

144

1- Use case derivation from conceptual model

The combined CMs presented in the CPTM were converted to use cases using the conversion

method explained in Chapter 4. All the activities requiring information system were selected

as use cases. The following use cases were identified:

 Create/ adjust a new peer tutor

 Create/ adjust a new peer tutee

 Schedule a peer tutor session

 Insert a tutor attendance record per session

 Calculate amount receivable by tutor

The use case diagram which the students created for PTS is presented in Figure 5-7; the

preparation of this was based on SSDDDF, as explained in Chapter 4.

Figure5- 7: Use Case Diagram for PTS

2- Use cases analysis and modelling

The undergraduate group work projects relied on the concepts determined in the

framework, according to which the use case diagram presents a hierarchy of business

activities by considering the goals of stakeholders. This further highlights the system being

requested and must be developed according to the problem definition during the SSM

phase. In addition to the textual format template (use case proforma), the use case is

modelled using a UML activity diagram, sequence diagram and class diagram. Whereas the

purpose of the activity diagram is to model the system perspectives, the sequence diagram

is used to model the interaction between the use case objects (the dynamic aspects of the

system). Also, the class diagram is prepared to present the structure for each use case,

145

which is at the end of the system structure. For PTS, each use case is presented by a

textual format template, called a use case proforma, which shows the details relating to it.

Chapter 4 describes the structure of use case proforma that is presented in table 4-1

prepared by (Din, 2009). The Appendix 2 represents the samples of simplified use case

proformas for PTS.

3- Generating activity diagrams based on use case diagram

The student group created the following sample activity diagrams, based on the use case

diagram, to represent PTS.

Figure5- 8: Activity Diagrams

5.2.3.2 Generating the class diagram based on use case and activity diagrams

A class diagram is “a collection of all classes and the relationship between them, and defines

the static structure of the system” (Lunn, 2003, p.19-20). The students in the

undergraduate group reported that the domain classes were understood, and the following

class-level specifications with their associations were derived.

146

Figure 5-9: Class Association

Figure5- 10: Class Level Specification

5.2.4 Post2-SSM Phase: Software Implementation

The domain model is the base from the programming code using the Naked Objects

implementation pattern is extracted, which is recommended by the SSDDD framework.

Naked Objects is adopted here since it supports the creation of system user interface from

the business domain model. After a brief description of the implementation of PTS using the

Naked Objects implementation pattern, the students applied it, which is presented in

Appendix 3. An evaluation of the implementation, and a reflection on the framework as a

development approach, are provided in the next section.

147

5.2.4.1 Implemented software evaluation

The students reported that peer tutoring is a widely implemented concept deployed through

different methods across different universities in the world. PTS is a promising application if

it can be adopted effectively in the university. Insight has been gained into the open source

packages and fully-committed community (Java, Eclipse, Naked Objects, etc.), which can

open wide horizons for future work, and hence careers. A close experimental understanding

of the underlying software structure has also been achieved, as along with an awareness of

the requirements of the software framework and the related benefits.

5.2.4.2 Reflection on the SSDDD framework

The benefits gained from the adoption of SSDDDF framework have been mentioned by the

students as:

 Clearer requirements definition through investigation using the soft system

methodology (SSM);

 High commitment to the object-oriented approach using UML and the Naked

Objects framework;

 Shorter project lifecycle as requirements are clearly identified from the

beginning, thanks to SSM.

This reflection, based on the students’ achievements, supports the arguments for using the

proposed framework as an information system development approach to understand soft

and hard issues of the system being investigated. The students stated that the system

requirements were clearer for them because of using SSM at the beginning, which reduces

the time required for development of information system. This evaluation and others will be

further discussed.

5.3 Undergraduate Project: Students’ Association System

The above section (5.2) describes an undergraduate project on the peer-tutoring system,

which was done using the SSDDD framework and undertaken as a group work project in

parallel with this one..

A group of undergraduate students in the IT College of Ajman University, UAE, selected the

development of a Students’ Association system (SAS) as their graduation project topic

during the second semester of the academic year 2008-2009, between 1st February and 1st

June, 2009. As mentioned before, the current researcher was assigned as the supervisor

for that project, and asked the group to use the newly developed SSDDD framework to do

148

it. This framework has been discussed in detail in Chapter 4 and briefly in the previous

section, 5.2. The students started the project using the first updated version of the SSDDD

framework. Their work and feedback are presented in the following sections.

5.3.1 Pre-SSM Phase

5.3.1.1 Initial problem identification

The students reported in their project that the Scientific Student Association in Ajman

University of Science and Technology required a system to solve the problems that they

were facing in their work. From the different stakeholders’ views, they identified the key

problem areas that need adequate attention. They were the need to simplify the election

process for the association’s members, to offer easy communication between student

members, and to produce the activities schedule and also organize them. The next section

will show the different views of stakeholders as reported by the students in their project.

5.3.1.2 Stakeholders roles analysis

The following stakeholders with their corresponding roles were identified:

Table5- 1: SAS Stakeholders and their roles

149

5.3.2 SSM Phase

5.3.2.1 Investigating the problem situation using rich picture

The concept of rich picture and its definition has been explained in the previous sections. In

SAS, the commonly used elements are the actors of the system that are presented by

different shapes.

Accordingly, the undergraduate student group investigated the problem situation of the

Students’ Association system and came up with the rich picture presented in the following

figure (5-12).

Figure5- 11: Rich Picture of SAS

150

5.3.2.2 Modelling the system using root definition

The explanation of root definition has been performed in the previous case study. For SAS,

the root definition was identified by the student group as follows:

“To develop a Students’ Association System for the Students’ Association Department to

control and schedule students’ activities and meetings, organize the election process, select

the association members depending on students’ votes, set the activities schedule and

manage communication between students and management through the association

members”.

5.3.2.3 Modelling the system using the conceptual model

Root definition is used to extract the conceptual model, which represents the different views

of stakeholders. In this case, if the modelled root definition is an accurate representation of

the system, then the conceptual model derived will describe the system activities that might

take place. The following conceptual models (CMs) of SAS were developed by this student

group based on in the activities of the previous works mentioned above.

 Figure5-12: CM of Management Member View

 Figure5- 13: CM of Association Member View

151

 Figure5- 14: CM of Student View

Figure5- 15: CM of Student Affairs View

Figure5- 16: CM of Colleges View

Figure5- 17: CM of Transportation View

152

The consensus primary task model (CPTM) is derived from the above views and represents

all the points agreed by different stakeholders; the CPTM for SAS is presented in Figure 5-

18.

Figure5- 18: The Consensus Primary Task Model (CPTM) of SAS

5.3.2.4 Comparing the conceptual models to the real world

As previously mentioned, the SSDDD framework describes the role of soft system

methodology, which requires the investigator to compare the conceptual models with the

actual real life situation, and if there is no real world system available, then the developed

conceptual model will be used as the real world system model. Here, the developed

conceptual models were considered as actual system models, as the SAS available was a

manual one and there were no real life models available to compare with the above

developed conceptual models. Based on this, the students used the developed conceptual

models as a base from which the SAS is modelled as a domain model. The consensus

primary task model (CPTM) is developed from these conceptual models, which is further

used with SSM to generate the domain model.

5.3.3 Post1-SSM Phase: Moving from Soft language (SSM Phase) to

Domain Model

5.3.3.1 Moving from SSM conceptual model to UML use cases

As in the previous case study, UML was adopted here to model the domain model, for which

the conceptual model is converted into use cases and use case modelling by using the

conversion method explained before,. The extracted use cases are then used to develop a

UML sequence diagram, class diagram and activity diagrams. The next subsection will show

the conversion from CM to use cases.

153

1- Use case derivation from conceptual model

The student group used the transition method, which is explained and presented in Figure

4-11, Chapter 4, as part of the SSDDD framework approach, to move from SSM and

consensus primary task model (CPTM) to UML use cases. The stage of moving from SSM

conceptual models to a use case is eminently difficult, and needs a clear distinction between

stakeholder goals, business activities and use cases. The students identified the use cases

for SAS and reported that the developed model represented a hierarchy of business

activities related to the stakeholder goals, which had encouraged the development of the

system. The identified use cases for SAS, together with the embedded activities in each use

case (Table 5-7) and the use case diagram, are presented below:

Table5- 2: SAS use cases

This student group preferred to present the use case activities in the above format rather

than utilise a use case proforma format. They clarified at this point that the use case

diagram they had prepared was a detailed one, and all the activities required to draw the

activity diagram were listed.

2- Generating activity diagrams based on use case diagram

The student group created 6 activity diagrams, which are presented in Appendix 4.

154

3- Generating sequence diagrams based on use case diagram

The student group went a further step in doing what the framework asked by giving a

description of the use cases. They prepared three sequence diagrams. They defined the

sequence diagram as a kind of interactive UML diagram that showed the operation of

processes among each other along with their order of occurrence. The three sequence

diagrams which they prepared are presented in the following figures.

Figure5- 19: Election Process Sequence Diagram

Figure5- 20: Produce Activities Sequence Diagram

Figure5- 21: Student Activities Application Sequence Diagram

155

5.3.3.2 Developing the class diagram based on use case and activity diagrams

Lunn (2003, p.19-20) defines a class diagram as “a collection of all classes and the

relationship between them”, which “defines the static structure of the system”. The student

group draw the following class diagram to represent SAS:

Figure5- 22: Class Diagram of SAS

5.3.4 Post2-SSM Phase: Software Implementation

The Naked Objects implementation pattern was used as recommended by the SSDDD

framework. A brief description of the implementation of SAS using Naked Objects and other

supported software, as done by the students, is presented in the following sections. An

evaluation of the implementation using the implementation pattern is also presented, as

well as a reflection on the framework as a development approach. Here is a group of screen

shots from the implemented software are presented in Appendix 5.

 5.3.4.1 Implemented software evaluation and testing

The students reported that they tested the implemented system based on two factors, the

interface factor and the coding factor. For the interface factor, they tested whether or not

the system contained interfaces for all the stakeholders; whether or not the interfaces were

simple and easy to use; and whether or not the interfaces matched the stakeholders’

respective requirements.

With regard to the coding factor, they tested the following issues: reduction of bugs/errors

that can be generated from code conflicts and code efficiency (getting the same result

within the best time and with the fewest resources). The testing process flowchart is

presented in Figure 5-23.

156

Figure5- 23: Testing Process for SAS

The students revealed that they had followed this testing strategy for ensuring the adequate

implementation of the system as per its design, for reflecting on the framework

requirements, and for gaining benefits from the learning process by making further changes

to enhance the system. They declared that the testing objectives determined were

achieved, and the system could be used by the department.

5.3.4.2 Reflection on the SSDDD framework

After developing the system, the students reported the following benefits:

1. The utilization of SSDDD framework helped them to improve their development and

documentation skills.

2. The adoption of the framework as an integrated approach for software development

was beneficial to comprehend the soft and hard requirements.

However, the students raised certain issues regarding their project, which are summarized

below:

3. The time frame allowed to complete this project was not suffient, since the students

needed to explore different aspects of Naked Objects, as it was new to them, and

required more practice to improve their professional development.

157

4. The required resources must be available, especially original copies of Naked Objects

rather than trial versions. Also, more time is required to deal with Naked Objects,

but if given enough time, some of them will handle it well.

5. As the students were junior developers, they insisted that the developed system had

a high potential of further enhancements and refinements. They hoped to improve

the system so that it could be available online for any member to access remotely.

Therefore, it can be reflected that though the framework provides successful

implementation of the system, it needs time to comprehend all the related concepts and

gain proficiency. For an undergraduate student, more training is required to understand the

SSDDD framework, along with high availability of resources.

5.4 Postgraduate Project: Schools Liaison Coordination System

The methodology Chapter stated that the framework is evaluated as a development

approach to an iteration process (action research). First, the undergraduate students

applied and evaluated the framework in their projects (these students are considered as

junior developers), and their feedback has been used for further development and

enhancement of the framework. The next step is to apply and evaluate the use of the

framework as a development approach for postgraduate student projects with a different

domain. This step will be presented here in relation to the Schools Liaison Coordination

System (SLCS) project, where any feedback will enrich the next iteration and be applied to

another postgraduate project.

In the summer of 2009, the postgraduate student Saraj Din selected the development of

the liaison coordination system within the School of Computing and Engineering as his

project. This system utilized the SSDDD framework. The school wanted to develop a

database system to replace the existing one based on EXCEL. It was requested that the new

system would analyse the data and also compare it against the previous years. It would be

required to use the EXCEL reports and generate cumulative reports by grouping them as per

the subject areas to provide an analysis of the applications. Also, the system would need to

integrate the contacts database for additional information to compare targeted schools year

by year.

A description of the SSDDD framework and its application by the undergraduate students

were provided to Saraj Din (2009), to assist him in understanding the work. The project

158

was commenced under the supervision of Dr. Steve Wade and with the current researcher

as co-supervisor. Saraj Din (2009) started the work by identifying the aim of this project,

which is to design and develop a database-driven reporting system by using SSDDDF to

achieve the following objectives listed in table 5-3.

Table5- 3: The objectives of database-driven reporting system

After this, he began to apply the framework using the feedback from the undergraduate

students’ work and the description of the framework given to him. The use of feedback to

increase learning is at the heart of the methodology applied to evaluate this framework as

an iteration process. The guiding methodology of SSM is a key part of SSDDDF, and the

enforced learning which it contributes is a major benefit of using it. The application and

evaluation of SSDDDF is presented in the following sections.

 5.4.1 Pre-SSM Phase

 5.4.1.1 Initial problem identification

Saraj Din (2009) conducted different meetings with the school staff in charge of admission.

He identified that under the existing system, the students’ applications for admission

received at the University Of Huddersfield School Of Computing and Engineering were sent

to the Recruitment Coordinator on a monthly basis in the form of an MS-EXCEL report

159

consisting of hundreds of records with precise information. The task of analysing this data

and make comparisons was quite tedious and time consuming. For these reasons, he

identified the problem to be: “To develop a system that takes EXCEL reports to generate

cumulative reports to provide analysis of applications by grouping them across subject

areas and integrating contacts database for additional information to compare targeted

schools year on year”.

5.4.1.2 Stakeholders roles analysis

As explained in the framework, stakeholder roles analysis aims to identify and assess the

roles of the key people or institutions, which may affect the success of a project. Saraj Din

conducted a meeting with Computing Manager Robin Sissons about the availability of the

resources to be used in this project. This was important in enabling him to identify the roles

of all the involved stakeholders. R. Thompson from “Mind Tool Club” emphasises the

significance of the role of a stakeholder by pointing out that “By engaging the right people

in the right way in your project, you can make a big difference to its success”.

Thus, for the success of this project, Saraj Din (2009) made it a priority to identify the exact

roles of the stakeholders involved in the Schools Liaison Coordination System. He identified

the following stakeholders:

 The primary stakeholder is the client, the recruitment coordinator Lorraine

Gearing, whose role is both administrator and user of this system.

 The School of Computing and Engineering at the University of Huddersfield is

also a stakeholder, and provides the resources such as software and

hardware to implement this system.

Based on this, Saraj Din (2009) involved the determined stakeholder (client) in the

development of his project through regularly scheduled meetings to ensure its success.

5.4.2 SSM Phase

5.4.2.1 Investigating the problem situation using rich picture

As mentioned in the previous cases, any elements can be included in the rich picture since

there are no specific rules for drawing it, but the commonly used elements are the actors of

the system.

160

For investigating the problem situation of the Schools Liaison Coordination System, Saraj

Din(2009) came up with the rich picture presented in Figure 5-24.

Figure5- 24: Rich Picture of the Schools Liaison Coordination System

5.5.2.2 Modelling the system using root definition

As explained in Chapter 4, root definition is describing the system purpose of the interested

stakeholders. According to SSM, the root definition explains the core perception of the

system to be modelled. It is then tested using Checkland’s mnemonic CATWOE. The root

definition is used for constructing a conceptual model (CM) or consensus primary task

model (CPTM).

The root definition for the Schools Liaison Coordination System, as identified by Din (2009),

is presented as follows:

“A Liaison Coordination System that imports Excel reports, integrate contacts database for

additional information to generate cumulative reports to provide analysis of applications of

students by grouping them across subject areas, and to compare targeted schools year on

year to save time.”

161

5.5.2.3 Modelling the system using the conceptual model

The conceptual model describes the activities that might take place if the relevant root

definition is an accurate representation of the system under development. The following

conceptual models (CMs) were developed by Saraj Din (2009), based on the previous works

mentioned above.

Figure5- 25: Client’s Overall Point of View

Figure5- 26: Client’s Point of View about Reports

162

Figure5- 27: Client’s Point of View about Contacts

Figure5- 28: Consensus Primary Task Model (CPTM)

5.5.2.4 Comparing the conceptual models to the real world

Saraj Din (2009) mentions that there was no real life schools liaison coordination system

available to compare with the above developed conceptual models. This being the case, the

conceptual models were used as a base from which the Schools Liaison Coordination System

163

was modelled as a domain model. A consensus primary task model (CPTM) is the result of

combining all the developed conceptual models. The other output models from SSM and the

CPTM are the major components of soft language, and these were used to generate the

domain model.

5.4.3 Post1-SSM Phase: Moving from Soft Language (SSM Phase) to

Domain Model

5.4.3.1 Moving from SSM conceptual model to UML use cases

UML is an important modelling language and was adopted here to model the domain model.

For this, the conceptual model is converted into use cases and use case modelling. The

extracted use cases are used to develop a UML sequence diagram, class diagram and

activity diagrams. The next subsection will show the conversion from CM to use cases.

1- Use case derivation from conceptual model

Din (2009) used the SSDDDF approach to move from consensus primary task model

(CPTM), generated through SSM, by converting it into UML use cases. As described earlier,

the SSDDD framework adopts the transition method explained in Chapter 4.

Based on the above method, Saraj Din (2009) reported that the developed model

represented a hierarchy of business activities related to the stakeholder goals that fuelled

the development of the system. The business activities are represented in a hierarchy of

conceptual models, with the lowest model containing more primitive, elementary business

activities than the higher ones. Each individual business activity is represented in context, in

the image of the conceptual model of which it was a part of. Using the above method, the

use cases for the Schools Liaison Coordination System were determined as shown in Figure

5-40.

2- Use case proforma

After deriving the use case diagram from the SSM conceptual model, Saraj Din (2009)

developed use case proformas to show the details about each use case. Saraj Din reports

that a use case proforma must describe the various components which were presented

before in table 4-1, chapter4.

The developed proforma tables to represent the Schools Liaison Coordination System are

presented in Appendix 6.

164

3- Generating activity diagrams based on use case diagram

Saraj Din (2009) created activity diagrams for the Schools Liaison Coordination System, and

those created for some of the use cases are presented in Figures 5-29, 5-30 and 5-31.

Figure5- 29: Activity Diagram for Import Monthly Report

Figure5- 30: Activity Diagram for Add, Edit or Delete Course Groups & Courses

165

Figure5- 31: Activity Diagram to Generate and Print a Report

5.4.3.2 Developing the class diagram based on use case and activity diagrams

In his project, Saraj Din (2009) referred to Lunn’s (2003, p.19-20) definition of a class

diagram, which was explained earlier. A class may include a lot of information, including

attributes of the data that is to be stored in the system and the operations that could take

place. A class diagram is a more detailed representation of a system design. The class

diagram is a principle output of object-oriented analysis and design (OOAD). Saraj Din

(2009) also identified the three basic types of relationship between classes, the first of

which includes one-to-one, one-to-many and many-to-many. The other two types of

relationships are inheritance and aggregation, which provides the mechanisms for re-using

design and code. Based on the above definition and clarification, Saraj Din prepared the

class diagram for the Schools Liaison Coordination System (Figure 5-32), which represents

the part of the domain system.

166

Figure5- 32: Class Diagram of the Schools Liaison Coordination System

In the domain model, the important business logic must be implemented in classes. As an

important part of the domain model, the implementation pattern utilize the class diagram to

generate the programming code.

5.4.4 Post2-SSM Phase: Software Implementation

Because of certain problems with SSDDDF implementation, Siraj Din (2009) opted to follow

an alternative implementation approach. SSDDDF requires specific DDD implementation

patterns, such as Naked Objects or alternatively the ADO.NET Entity Framework, but in this

project it was difficult for him to apply it due to the following critical issues:

1. The only version of Naked Objects available to him was a beta version that

was only applicable for MS Visual Studio 2010, which was also a beta version.

2. In reply to an email from Saraj, Richard Pawson (Managing Director of Naked

Objects.org.) explained that the previous version of Microsoft Entity

Framework was weak and would no longer be supported.

167

3. Using ADO.NET Entity Framework was highly time consuming, and as a new

developer, the task would be difficult because it has its own new query

language (Entity-SQL), which is entirely different from standard query

language (SQL).

4. Entity-SQL does not support DML statements (insert, update, delete) and also

some other programming requirements, and without DML he would be unable

to develop an import wizard.

Based on the above, Saraj Din preferred to continue with the traditional object-oriented

approach to design the system structure and database, and then proceed to the

implementation process. He decided to use visual basic as an implementation language and

SQL Server 2008 as a database server. He argued that the Microsoft.net framework

provides full support for multiple tier applications, whereby different layers can be easily

managed into separate components using built-in classes.

5.4.4.1 Implementation evaluation

After examining the above problems, it is clear that none of them are directly related to the

use of SSDDDF in the implementation process. All of them are related to the availability of

resources and the time required by the developer to adopt new information system

development approaches. Because of the time constraint, another implementation approach

was selected and used. This situation helped to raise awareness that with the next case

study, all the necessary resources must be available, as well as the skills required to deal

with the implementation patterns. This issue will be clarified in the next section, which deals

with the use and evaluation of the SSDDD framework in the other postgraduate student

projects.

5.4.4.2 Reflection on the SSDDD framework

The postgraduate student Saraj Din (2009) explains that the purpose of using SSDDDF was

to discover if he could use it to develop a software application. In his evaluation, Saraj Din

(2009) mentions the benefits of SSDDD framework, which are presented as follows:

1. SSDDDF enables the researcher to understand and explore the problem situation

better through SSM. It enables the comprehension of different views of the current

situation through the stakeholder analysis and root definition modelling stages. This

can facilitate an understanding of the business objectives and how activities are

done.

168

2. It enables the developer to build a better application that suits the users’

requirements, and even to build a system that improves on those requirements. The

UML stage helps the user to model the system well and to understand the system

requirements exactly.

However, he adds that it was difficult for him to use Naked Objects because of the

unavailability of resources, and he was also not prepared to implement the software using

the Naked Objects implementation pattern.

Looking at the above mentioned problems, it is evident that they are not related to the

nature of the framework, but to the developer himself. Such problems can be solved before

starting any project by ensuring that the developers are ready to use the framework

completely, not partially as happened with Saraj Din. On the other hand, this point can also

be regarded as a positive outcome, as it ensures the high compatibility of the framework

with the use of other tools for implementation. Sairaj Din used the framework to investigate

and model the system, and when it came to the implementation, he used other tools which

were compatible with the framework.

5.5 Postgraduate Project: Peer-Tutoring System Development

In the summer of 2010, the postgraduate student Joseph Ucizi Mtenje selected the PTS

project and decided to use the SSDDD framework to build it, in order to evaluate the

framework as a system development approach. A description of the peer-tutoring case

study, the framework, and an explanation of how the undergraduate students had applied

the module were all provided to him for providing better understanding. The work was

commenced under the supervision of Dr. Steve Wade and the current researcher as co-

supervisor to guide the student and collect feedback about the framework’s application. The

implementation part of this project aimed to build an application that would be used to

manage the PTS by letting students book the tutoring sessions. It also aims to allow the

lecturers in selecting the tutors and tutees on the basis of students’ results from the

previous year, previous semester or Blackboard quizzes. The tutors would be the students

in their final year with good grades, while the tutees would be the students of first or

second year, who needed support to improve their skills. The lecturers would be able to load

room availability, enhance the booking process, and monitor the progress of the system by

monitoring whether the pass rate had increased as compared to the previous year (without

PTS). The passing marks, to determine whether a student qualifies for the tutor position or

169

not, would be determined by the management and set as a business rule. The information

system developed aimed to help the administrator of the PTS by enabling the following

functions presented in table 5-4.

Table5- 4: PTS actors and functions

A detailed description of the application of the framework by the postgraduate student

Joseph Ucizi Mtenje (2010) is presented in the following sub-sections, which illustrates the

usage of framework in developing the PTS.

5.5.1 Pre-SSM Phase

5.5.1.1 The problem identification

The postgraduate student Joseph Ucizi Mtenje (2010) refers to the previous work of Salahat

et al. (2009), which reports that both the Department of Informatics in the School of

Computing and Engineering at the University of Huddersfield in the UK, and the Information

Technology College at Ajman University of Science and Technology in the UAE, offer

introductory programming modules for their first year computing students. These modules

focus on Java programming. Lecturers faced certain difficulties pertaining to students’

understanding of the subject as it required problem-solving skills. Students required more

tutoring and practical sessions to help them practice different exercises and thus enhance

their understanding and practical skills. Both universities expected that by implementing a

peer-tutoring system, the failure rate would be reduced. The departments wanted to

identify knowledgeable tutors from the other students and find a means to reward them.

170

The exact problem was identified by working with the students and interviewing them about

the difficulties.

Based on the previous work that had been completed, which included interviewing students

and administrators in the departments, new interviews were conducted by Joseph Ucizi

Mtenje (2010) with those studying programming modules in the Informatics Department at

the University of Huddersfield, as these would be the people using the system. He also

benefitted from interviews conducted with undergraduate students in the IT College in

Ajman University, UAE, which are reported in the previous work mentioned above. In

addition, he received feedback from both the current researcher and Steve, the supervisors

located in each of the universities, to clarify certain points about the system. Joseph Ucizi

Mtenje also interviewed some of the staff members in the School of Computing and

Engineering’s Department of Informatics who would use the system in the department. One

of them is a lecturer who teaches a programming module in the department and stated that

“using PTS for the ‘Introduction to Programming’ module would help the students to

increase their confidence in the class, which will help them to be more creative”. The

lecturer mentioned that the system must get the results of the students from the database

and select those students who achieved higher marks, in order to select them as tutors. The

tutors requested to insert their time availability into the system. The system must select

those students with low grades to be tutees.

Joseph Ucizi Mtenje also conducted several meetings with the current researcher as a co-

supervisor and client of this system. The current researcher was expecting PTS to improve

the pass rate and hence reduce the failure rate while decreasing the workload of the

lecturer. Also, the training sessions are important for the tutors, as they ensure the

consistency and quality of the system. Once the students were comfortable with tutoring

sessions, they could start studying immediately, and not wait for the students who were

uncomfortable.

Joseph conducted another meeting with the management and administration staff. They

stated that they need a system for improving the pass rate to help the university and

enhance its reputation. Also, they need the system to be easily managed and operated with

low financial expenses. The PTS system will be applied and used within the university rules

and regulations.

171

Finally, Joseph conducted a series of interviews with the students. Since, he had the

feedback of interviews conducted in previous work, he tried to determine further issues

related to the problems of the programming module. Many of students mentioned that they

will be happy to learn from each other rather than from their lecturers who teach formally.

According to the students who will be tutees, they are looking for extra skills and knowledge

to support them to get higher grades, while the students who will be tutors are looking for

some extra money to contribute to their expenses. Also, the students focus on some

administration issues such as their difficulty in travelling to other campuses to attend

tutoring sessions, and preference to be tutored after 5 to avoid any clashes with their

classes. The final point they highlighted was that they preferred the system to be online for

allowing them to study from home or anywhere else.

As action researchers, Salahat et al. (2009) conducted the face-to-face interviews

informally, so that the participants would feel comfortable as they could see who was

interviewing them, and to allow them to express their ideas and suggestions comfortably.

The participants were able to explain some ideas through face-to-face interviews in a better

manner, for example by using gestures and facial expressions, which may not be fully

explained in writing or over the phone. These actions were noted and appreciated

throughout the interviews, which would not have been feasible over the phone.

As explained above, similar data collection methods were used to conduct new interviews

for collecting different types of data through different types of questions. Joseph Ucizi

Mtenje asked questions such as:

172

This reinvestigation and refinement of previous findings is related to the heart of the

framework, which, as a multimethodology, has adopted SSM as a learning method along

with all the other components embedded in it. In this phase, the problematic situation was

investigated comprehensively to enable more clarity, which would in turn support the later

stages.

5.5.1.2 Stakeholders determination

The stakeholders in this case may be defined as the people who will be using the system

and also benefit from it (Joseph Ucizi Mtenje, 2010). The stakeholders of the required PTS

system were determined to be peer tutors, peer tutees, lecturers and management.

Stakeholders often have different expectations of a system. The different stakeholders of

this system expected that they could achieve the following from using PTS:

5.5.2 SSM Phase

5.5.2.1 Investigating the problem situation using rich picture

In the investigation carried out by Joseph Ucizi Mtenje (2010), rich pictures were used as a

tool to express the views of stakeholders and their expectations from the system being

developed. In order to redevelop a rich picture of the situation under investigation, he used

a number of information sources to capture views about the introductory programming unit

from students, lecturers, the management of the School of Computing and Engineering, and

the perspectives discovered in previous cases. Interviews with the school administration and

groups of students were conducted to understand the problematic situation of teaching the

introductory programming module, and suggestions for solving the problems were set out.

The following figure (5-33) represents the rich picture of PTS as drawn by Joseph Ucizi

Mtenje (2010), based on the previous work by Salahat et al. (2009) and the new data

173

collected as mentioned in section 5.5.1.1 ‘The problem identification’.

Figure5- 33: Rich picture of the PTS

5.5.2.2 Modelling the system using root definition

In addition to the work previously mentioned, Joseph Ucizi Mtenje adopted Checkland’s

CATWOE mnemonic and applied it to PTS. He mentions that this transformation is carried

out for students, and in this case the students were the customers controlled by actors (the

researcher and supervisor). The system activities are controlled by an owner (client), and

are performed in a university environment which has established conditions and policies.

Using PTS, Joseph Ucizi Mtenje determined the components of CATWOE presented in table

5-4.

174

Table5- 4: CATWOE of PTS

The root definition for PTS was determined as a compromise between the previous work and

as that conducted by Joseph. It is given below:

“To propose a peer tutoring system to improve the pass rate for students studying the

undergraduate programming modules in the Informatics Department at the University of

Huddersfield, and also to help in the selection of peer-tutees and peer-tutors; the

scheduling of tutoring sessions based on the availability of rooms; selection of tutors and

tutees; monitoring of perceived benefit to tutors and the progress of tutees in increased

self-confidence. Also, the aim is to measure the impact on failure rates and allow the users

access to the application to book and deliver sessions without the help of lecturers”.

5.5.2.3 Modelling the system using conceptual models

The conceptual model describes the activities that might take place if the relevant root

definition is an accurate representation of the working of a system. The following conceptual

models (CMs) were developed by Joseph Ucizi Mtenje (2010), based on the previous works

and the new data that he had collected. They represent different stakeholders’ views, the

actions that must be taken based on their views, and also the need to meet the particular

cultural, political and social requirements of the system. All of these issues are expressed in

the rich picture and modelled using the following conceptual models.

175

Figure5- 34: CM of Management’s View

Figure5- 35: CM of Tutee’s Point of View

176

Figure5- 36: CM of Tutor’s Point of View

Figure5- 37: CM of Lecturer’s Point of View

The above diagrams represent the different views and perceptions of the stakeholders. The

proven issues between the different stakeholders are presented in a diagram called the

consensus primary task model (CPTM), which represents those points which are agreed by

all the stakeholders.

177

Figure5- 38: CPTM of PTS

5.5.2.4 Comparing the conceptual model to the real world

SSM requires the investigator to compare the produced conceptual model with the actual

real life system model. In this project, since there was no existing peer tutoring system, it

would need to be critiqued by discussion and making comparisons with another department

offering PTS. For example, it would be necessary to consider the internet programming

modules which would support this or another university’s system if they had one. Also, the

conceptual model would be considered as the base to model the PTS system as a domain

model. The CPTM, as a combination of all the conceptual models, and the other components

of SL will be considered and used in the next phase to generate the domain model, as

stated in the earlier stages of the framework.

5.5.3 Post1-SSM Phase: Moving from Soft Language (SSM Phase) to

Domain Model

The domain model is represented using UML, which converts the conceptual model into use

cases and use case modelling. The next subsection will show the conversion from CM to use

cases.

178

5.5.3.1 Moving from SSM conceptual model to UML use cases

1- Use case derivation from conceptual model

A use case can be represented as a diagram called a use case diagram or through a textual

format called a use case proforma. A use case diagram is made up of three key elements,

which are actors, use cases and the relationship between them. An actor may be a user

(person or thing) of the system or another system, while a relationship is a link between

actors who use ‘use cases’, and sometimes a ‘use case’ may use another use case or actor.

As in the previous work, Joseph Ucizi Mtenje adopted the approach explained in Chapter 4

for conversion from SSM conceptual model to use case model. At this phase, the CPTM

models from SSM are converted to UML use cases so that they can be used in the next

stage of implementing the application using DDD implementation pattern. The conversion

process, as part of SSDDDF, is explained in Chapter 4 and presented in Figure 4-11. Any

activity requiring information system is selected as a use case. The stage of moving from an

SSM conceptual model to a use case is not as straightforward as this discussion would

suggest. In thinking this through, it has proved necessary to make a clear distinction

between stakeholder goals, business activities and use cases. The Conscious Primary Task

Model (CPTM), which is generated through combining SSM conceptual models, is used to

map the activities to use case diagram using the elaboration technique, and stated that use

cases are used to model the business domain activities based on DDD concepts.

Joseph Ucizi Mtenje (2010) cited Salahat et al. (2009) and illustrated that when SSDDDF is

moving through the process of converting from SSM soft languages to UML diagrams, it

requires mapping of the activities from SSM conceptual models, only after a proper

understanding of the user requirements and problem situation, to use case diagrams that

represent the functionality of the proposed system while still maintaining the user

requirements and business activities from the conceptual models in a one-to-one

relationship. This will result in some conceptual models being combined and others being

decomposed. The use case diagram provides a hierarchy of business activities concerning

with the goals for stakeholders that led to the need of developing a system as it is defined

in the problem definition in the SSM stage. The conceptual models are arranged in a

hierarchy in which the more primitive and elementary business activities are lower than the

others. An image of the conceptual model will represent an individual business activity of

that part. Using the above conversion algorithm, the conceptual model of PTS presented

above is converted into different use cases. The following use case diagram (Figure 5-39)

(Joseph Ucizi Mtenje, 2010) presents the result of the conversion process.

179

Figure5- 39: Use Case Diagram of PTS

2- Use case proforma

After derivation of the use case diagram from the SSM conceptual model, the use case

proforma is prepared to show the details about each use case. Joseph Ucizi Mtenje (2010)

developed the use case proformas for the PTS system, which are presented in Appendix 7.

5.5.3.2 Generating activity diagrams based on use case diagram

Activity diagrams are a part of the domain model being is used to implement the

information system. Activity diagrams present the stepwise stages of the business process

or the software process from starting point to the end; this process may be carried out by

people, software components or computers. Each diagram shows the activities embedded in

any use case within the use case diagram representing the system.

Activity diagrams will be a part of the domain model used to implement the PTS system as

an information system.

180

Figure5- 40: Activity Diagram to Update a Tutor or Tutee

Figure5- 41: Activity Diagram for Scheduling a Session

181

5.5.3.3 Generating the class diagram based on use case and activity diagrams

A class diagram is a representation of the basic structure of a system. It shows the

presentation of the classes in the system, the linkage between them and the number of

links. It is a more detailed presentation of the system (Oliver & Kent, 2009). Each use case

is presented using a textual template, activity diagram and sequence diagram, and all of

them are combined in a use case diagram. The next step in the process is to take the

business logic identified in the use cases and associate it with the classes in a class

diagram. Following the guideline that all important business logic must be implemented in

classes of the domain model, it is used to generate the programming code through the

implementation pattern. The class diagram of PTS is presented in Figure 5-42 (Joseph Ucizi

Mtenje, 2010).

Figure5- 42: Class Diagram

5.5.3.4 Change report generation and refinement

As shown in Figure 4-1, which represents the SSDDD framework, a reconsideration of

previous stages is required to refine what has been done during Pre-SSM, SSM and Post1-

SSM. This refinement is essential to be sure that the exact changes required have already

182

been modelled well as a domain model. As a guiding methodology, SSM focuses on the

generation of the required change report for the system to be recommended to manage the

action (Checkland & Poulter, 2006; Checkland, 1999; Checkland & Howell, 1998).

Therefore, before leaving this stage, the domain model should be refined and made ready

for implementation.

At this point, the methodology is completed and can be restarted again if any further

improvement of the situation is required. It was at this point, where PTS and its application

could be implemented and used to serve the programming modules. The system requires

continuous monitoring to see if there are any deviations and if yes, then how they can be

improved.

5.5.4 Post2-SSM Phase: Software Implementation

The SSDDD framework considers the domain model as the base from which the

programming code is extracted by using the implementation pattern. Naked objects

and TrueView are recommended as implementation patterns. A brief description of

the implementation of PTS, as done by Joseph Ucizi Mtenje (2010), using both

patterns is presented in the following sections. An evaluation of the implementation

using both patterns, and a reflection on the framework as a development approach,

are also provided.

5.5.4.1 Naked Objects implementation:

As discussed in Chapter 4, Naked Objects is an implementation pattern used as part of

SSDDDF. The following is a sample of PTS implementation using the Naked Objects pattern.

Figure5- 43: PTS Architectural Model Implemented with Naked Objects

183

Figure5- 44: Naked Objects MVC Application

5.5.4.2 TrueView Implementation

The TrueView implementation pattern is suggested as an alternative to Naked Objects. The

software is used to build an interface that users will use to access the system, to do all

activities and arrange for sessions. The figures showing the user interfaces of PTS as

implemented using the TrueView implementation pattern are provided in Appendix 8.

5.5.4.3 Evaluation of implementations

Joseph Ucizi Mtenje (2010) made a comparison between Naked Objects and TrueView as

implementation patterns. The important issues he raised in this comparison was the

usability of the system developed using Naked Objects and TrueView. He preferred Naked

Objects over TrueView. The following section discusses the usability testing and the

comparison between the two implementation patterns as presented by Joseph Ucizi Mtenje

(2010).

1- Usability testing of TrueView prototype

When the TrueView application was created, a few users were requested to use it and

provide the relevant feedback. The users were asked to perform different functions of the

system like creating a tutor, tutee, new session, new location, and a module.

Some of them complained about the right click function, which is not commonly used by

them in windows. Another user commented about the interface of the application that needs

further improvement. On the other hand, one user liked the logic in the application that

184

allowed him direct access to the business objects and enabled him to manipulate them

directly.

2- Usability testing of Naked Objects prototype:

Several users were also asked to try using the application developed with Naked Objects

MVC, to comprehend its usability and user-friendliness. The users were asked to perform

different functions of the system like creating a tutor, tutee, new session, new location, and

a module. Also assign to module and mark attendance sheet.

One user commented that it was easy for him to use it but needed more improvement in

terms of interface. Another lady user said that it was easy for here to manage it without

training to perform all the functions. She added that it is easy for the users to navigate

through the webpage. Other user also revealed that the system allowed them to search

through the database by using different keywords.

3- Comparison between Naked Objects and TrueView patterns

Based on the above usability tests, the Naked Objects application was preferred by the

users rather than preferring TrueView application (Ucizi Mtenje ,2010). The TrueView

modeller does not support database integration, however, TrueView Agile Developer version

supported it. For the PTS, supporting database integration is a necessity, so it would be

essential to buy this agile version, which would mean greater cost to the client, while a

better service can be provided more cheaply with Naked Objects MVC (Naked Objects,

2010). Nonetheless, as mentioned above, the usability of Naked Objects and its application

interface that highly supports DDD are better than TrueView and therefore, it is more

preferable than the TrueView.

5.5.4.4 Reflection on the SDDDF

In his evaluation, the postgraduate student Joseph Ucizi Mtenje (2010) mentions that he

had not previously come across any combination like this. The closest one he had come

across was that used by Lane and Galvin (1999), which combined and transited from SSM

to object-oriented analysis, during which they moved from SSM conceptual models and

developed use cases, but did not proceed to building an application using DDD

implementation software. In SSDDDF, however, the application is built, allowing users to

access business objects without using controllers, an aspect not mentioned by Lane and

Galvin. Joseph Ucizi Mtenje (2010) adds that SSDDDF has many advantages, but the major

one is that it enables the researcher to understand the problem situation better through

185

SSM, as it tends to provide different views of the situation from different stakeholders at the

root definition stage, as well as at the DDD stage when it is important to understand the

business objectives and how activities are done. This enables one to build a better

application to suit the users’ requirements, and also to build a system that more effectively

fulfils the requirements that have been studied in the UML stage. The application will be

easier to use, as it gives the user direct access to business objects and the facility to

manipulate them more easily than through the controllers required in conventional MVC

applications.

On the other hand, Joseph Ucizi Mtenje (2010) says that the point he found difficult in the

framework was the point of conversion from SSM to UML, as this is not a one-to-one

conversion, but involves the combination and decomposition of conceptual models. He

advises that more research is needed in this area, in order to achieve a smoother and easier

transition and to ensure that other researchers do not need to spend so much time it. This

point will be considered in the discussion, and suggestions for future work will include the

development of a pattern language to solve this situation.

5.6 Concluding Remarks

This chapter demonstrated the application of SSDDD framework in different case studies,

which were taken from student’s information system projects. After evaluating the

application of the proposed system in both undergraduate and postgraduate projects,

following concluding remarks/results are obtained:

1. The proposed framework is efficient in understanding the requirements off all the

stakeholders at the initial stage, by comprehending the different perceptions and

views. All the projects emphasized on this benefit of the framework. Through SSM,

the system provides high clarity of requirements.

2. The proposed framework was efficient at understanding the soft and hard

requirements of the information system, thus eliminating the major challenge that

leads towards IS failure. It also provided high understanding of the problem situation

through SSM.

3. The Naked Object implementation pattern, though time consuming and difficult to

understand, provides high compatibility pertaining to DDD interface along with high

usability. Also, the overall framework was found to be compatible with the other

186

implementation tools. However, a downfall of this approach is the lack of resources

and time to understand it, as the timeframe for completing the projects by the

students were insufficient.

4. With effective implementation of this framework, the project lifecycle can be

improved, however, the developers need to be proficient to achieve this. Some of the

students also professed that the utilization of this framework assisted them in

improving their development skills.

5. The time was found to be a major constraint in adapting to the new framework.

Therefore, it is advised to first provide training of the framework and then start with

its implementation. Also, the resources unavailability was found to be a potential

constraint

In conclusion, the requirements of the respective projects in case studies were efficiently

identified through the deployment of SSDDD framework, thereby reducing the chances of IS

failure. The system was also observed to be beneficial in terms of maintaining balance

within the soft and hard requirements. The comparison of the current framework with the

existing methodologies have been executed in the next chapter.

187

Chapter 6: Evaluating SSDDDF Through Teaching

ISD module and the Comparison with other

Frameworks

In chapter 5, the proposed SSDDDF was evaluated as an ISD development approach

through practising different undergraduate and postgraduate students projects to gain the

feedback and reflections from the students. This chapter is presented first the importance of

the students feedback and reflections and why to use them to evaluate the proposed

framework SSDDD through Action Research, and the justification of using the evaluation

criteria and the evaluation framework. These are presented in section 6.1 and section 6.2

prospectively followed with section 6.3 which is presented further evaluation of the

proposed framework by a larger sample of postgraduate students studying ISD module

‘Methods and Modelling’ in the Informatics Department in the University of Huddersfield.

The comparison of SSDDDF with DDD and with other frameworks reviewed in the literature

review chapter are presented in section 6.4 and section 6.5 prospectively. The comparison

of the proposed and evaluated SSDDD framework with the existing studies was done to

comprehend its contribution to the literature. In section 6.4, the comparison is made with

the DDD framework, where the aim of the proposed SSDDD framework is to improve the

DDD framework through modelling and implementing business domain systems, as well as

by introducing a new language, named ‘soft language’, that enables the effective

communication between different stakeholders of the system. This language is designed to

operate as a complement to the ‘ubiquitous language’ of DDD. The framework has been

evaluated through various case studies held at the educational setting, which has not

previously been explored for DDD. Then section 6.5 presents a comparison of the proposed

framework with the existing multi-methodology frameworks explored in the literature

review chapter. These comparisons are briefly made, where the issues of the existing

methods are depicted along with their solutions obtained through the current proposed

methodology

188

6.1 The importance of Students Feedback and Reflections to

Evaluate the planned Actions(The link between Action Research

Evaluation approach)

6.1.1 Introduction

Soft systems approaches were categorized under action research approaches. In this thesis,

action research has been adopted through the use of soft system methodology as a guiding

methodology for the proposed framework. The use of different cases selected and explored

within an educational background and using the framework for teaching ISD has allowed the

current researcher, as a lecturer in the educational environment, to act as facilitator and

action researcher during the research period. Coghlan and Brannick,2014 was mentioned

that Action Research is a recursive process which allow the researcher to go through a

cyclic process of planning, acting on the plan, reflecting on the outcomes, implementing the

change and further re-planning. In the alignment of the literature of Action research, this

thesis followed the cyclic process of evaluation in order to gain and refine the feedback and

reflections of the students about the proposed framework. This process is re-planned and

repeated different times using different case studies of ISD and by teaching and practising

the framework tools through an integrated ISD case studies. Students feedback and

reflections are important to support the formulation of the comparison criteria and the

comparison process of SSDDDF with other methodologies and frameworks. By repeating the

cyclic process of evaluation, the feedback and reflections were re-used by other cycles to

improve the new feedback and reflections the next cycle, and the same were done for the

followed cycles. Action Research as adopted methodology was illustrated in chapter 3 and

presented following Kemmis & MC Taggart (2005) Action Research Spiral Fig(3-1) which is

presented in chapter 3 and here.

Data gathering

through

literature review

for identifying

‘hard’ and ‘soft’

criteria

Developing and evaluating the framework through interviews

with stakeholders and developers (students) of ISD projects.

Applying proposed technique to practical case studies. Teaching

ISD using the proposed framework

Reflections on the

benefits of the

proposed

framework and

comparison with

existing frameworks

189

6.1.2 The cyclic process of Action Research Execution

The cyclic process adopted by In this thesis performed and executed as follows:

1- Cycle1 : Plan: literature review to identify ‘hard’ and ‘soft criteria. *** Act & Observe:

Develop the framework and practise it through illustrative case study.*** Reflect: feedback

and reflections from the students through the induction workshop.

2-Cycle2: : Plan: Prepare and submit 2 undergraduate case studies attached with the

feedback and reflections from cycle1 to the 2 groups of students. *** Act & Observe: Apply

the proposed framework to undergraduate practical case studies by the 2 groups.***

Reflect: feedback and reflections from the 2 undergraduate students groups through the

practical case studies application.

3- Cycle3: Plan: Prepare and submit the first postgraduate case study to the first

postgraduate student with feedback and reflections of first and second cycles. *** Act &

Observe: Apply the proposed framework to the first postgraduate practical case study. ***

Reflect: feedback and reflections from the first postgraduate student through the practical

case study application.

4- Cycle4: Plan: Prepare and submit the second postgraduate case study to the

postgraduate student with feedback and reflections of first, second, and third cycles.*** Act

& Observe: Apply the proposed framework to the second postgraduate practical case

study.*** Reflect: feedback and reflections from the second postgraduate student through

the practical case study application.

5- Cycle5: Plan: Prepare the module ‘Methods and Modelling’ , the practical case studies

and provide them to the students with the previous feedback and reflections.*** Act &

observe: teach the module using the proposed framework and investigate the students

through different data collection methods. *** Reflect: feedback and reflections from the

postgraduate students done the module.

6- Cycle6: Plan: Formulate the comparison criteria based on the literature and the

reflections about SSDDD gathered through all previous cycles to compare SSDDDF with

DDD.*** present both frameworks performance into 2 separate tables to show their

capabilities to handle different IS perspectives presented in the comparison criteria, develop

190

the comparison template, and compare SSDDD with DDD based on this template.***

Reflect: feedback and reflections from the researcher about the comparison results.

7- Cycle7: Plan: Use the reflections about SSDDD gathered through the previous cycles to

compare SSDDDF with other methodologies reviewed in the literature.*** present

performance of SSDDD compared to each methodology.*** Reflect: feedback and

reflections from the researcher. Conclusion results and discussion.

6.1.3 Discussion and conclusion

The above cycles presented the evaluation of the action research utilized by this thesis. The

feedback and reflections of students are very important since each cycle feedback will feed

the next cycle to learn from the previous work and this represent the heart of the SSM as a

guiding methodology of this reasearch. So, using the above link between the students

evaluations through the practical case studies and teaching, the process will proceed to

continue the action research evaluation by comparing SSDDD with DDD in section 6.4 and

compring SSDDD with other methodologies in section 6.5 to recognize the capabilities OF

SSDDDF among other frameworks documented in the literature. The action research was

evaluated through the above formulated approach to gain the feedback and reflections of

the students through the application of different case studies and teaching ISD module. The

feed back and reflections are very important since these students acts as developers to

evaluate the proposed framework. As a researcher and actor at the same time, I recognized

that gathering feedback and re-use it for the next cyle is a good support to the next

evaluatter in order to learn from the previous researcher efforts as learning is the heart of

the adopted guiding methodology (SSM). By reaching the final cycle of students

evlauation, their feedback and reflections became more clearer and benefecial to be used

for the comparison with DDD and other methodologies. This approach wll guide this work to

recognise the capabilities of SSDDD as an ISD approach and what is new about it.

6.2 Justifications of the evaluation framework

The evaluation framework adopted an evaluation criteria consist of different well known

business perspectives (Table 6-1) where used to evaluate similar frameworks. The

comparison done using this framework is limited to the availability of information about

DDD and SSDDD, and the availability of judgment techniques. Likert scale is considered and

used here to judge the contribution of each perspective of the proposed evaluation

framework. Al Humaidan,2006 and others researchers used Likert scale before to judge

191

similar perspectives. May be other Judgment techniques will work better, but still the results

obtained reflects good results about the evaluated framework SSDDD. The following

subsections presents the justification of the selected criteria, the applicability of the criteria

to gain results, the limitations of the adopted evaluation model, similar work used the same

criteria, and the justification of the benefits of the proposed and evaluated framework

SSDDD.

6.2.1 Justification of the selected criteria through the evaluation

framework

 The evaluation framework considered an evaluation criteria consist of different well known

business perspectives where used to evaluate similar frameworks and added another two

perspectives. Soft Perspective which used in similar comparison by Al Humaidan,2006 and

widely applied in ISD by other researchers (Checkland,181; Avison,1990; Bustrad,1999,

Petkov,2007;etc) and implementation perspective as a new one added by the proposed

framework. The dependence of soft perspective is over the SSM techniques. These SSM

techniques are responsible for the involvement of users in determining the roles of the

stakeholder and the problem. The problems are verified using various means and before

proceeding to the UML model, it is important to acknowledge the feedbacks and acceptance

of the developed models. This involvement of SSM in DDD is not adopted as a consequence,

being the availability of user involvement still the understanding of methods and techniques

for the development of domain model was also not guaranteed. The handling of

organizational perspective is through UML model technique and is done by both DDD and

SSDDD. The benefit of SSDDD is that it uses both the use case and the class diagrams while

only the class diagrams are used by DDD. The behavioural perspective is also handled

more reliably using the SSDDD as it entails both SSM and UML model techniques as they

indicate using the sequence diagram and activity diagram for modelling the activities

depicted in use of case diagram. In this the descriptive modelling is performed using the

UML diagrams whereas in DDD only class diagrams are used. As in the behaviour, it is not

possible to fix it or standardize it as the directions can be changed on the basis of the

occurrence of the various circumstances. The informational perspective is used to

represent the informational entities required (entities within the structure and their

relationships), and these can be presented in a tabulation form using use case proformas

and class diagram. Through the evaluation, both DDD and SSDDD are not presented this

perspective properly because some information is still not recognized by either of the

192

approaches, they cannot be considered complete. Based on this perspective the proposed

approach supposed to develop or use other tools to represent informational perspective.

The functional perspective is to handle the business process activities and information

flow through SSM conceptual models and UML activity diagrams. Through this evaluation

SSDDD used both techniques for modelling the business functions. This support using this

perspective as part of this evaluation to be sure that the business process activities and

information flow are modelled properly. The purpose of the implementation perspective

is to handle the implementation of the domain model into an information system. Both

approaches DDD and SSDDD done this using the implementation patterns to guide the

developers and some of them considered this as a restriction of their choices. Based on this

evaluation criteria, the main criterion of selecting the proposed framework was that it used

both the SSM and the UML model techniques which give better outcomes.

6.2.2 Applicability of this Criteria gaining better results

The evaluation of the Information system development approach using specific evaluation

criteria will help the evaluator to see the performance of the development approach and

how it work. Here the DDD approach seeks the system process to be modelled as a domain

model to be used for implementation. The basic concept of the DDD approach is the

development of the ubiquitous language comprising of various types of concepts, designs,

diagrams and documents in order to enhance and improve the domain experts and the

developers’ communications amongst them. These domain experts and the developers use

this ubiquitous language for the purpose of developing and inventing a new domain model

as stated by Evan in 2004. There are a number of diagrams which were used for modelling

the business process as defined by UML. But the ability to solve and explore various issues

related to problematic situations which can only be handled using the method known as soft

system methodology (SSM) as described by Humaidan, 2006, Poulter, 2006 and Checkland,

1999. This SSM is a developed source of solving the problem which has its focus over the

idealized model development of the systems which were relevant and comparable to the

counterparts of the real world. The relationship amongst the SSM, design techniques and

the object oriented analysis was defined by some researchers generally but, its applications

are very limited. UML is considered to be the domain model by DDD. The developer is

further guided by the SSDDD framework for the development of a Soft Language comprising

of SSM output so that the soft aspects are dealt by them which are mishandled or not

handled by DDD. The SSDDD works over the multimethodological framework handling both

types of issues which are soft and hard of the business domain process modelling and

193

implementation as an IS. The level of understanding and clarity of stakeholders is very high

as it applies to both type of soft and hard requirements successfully. The objectives are

attained using the systematic approach decreasing the complexity and information system

failures. The framework of SSDDD effectively manages and handles the changes. In the

aforementioned ways the SSDDD attains better application results than the DDD

approaches. This support the selected evaluation criteria to find out how all business

(system) perspectives can be handled by the evaluated framework as the case of SSDDD.

6.2.3 Application of same criteria in similar work

The similar criteria is used in the other works as described by Al Humaidan,2006 and before

by Curtiz,1992 and Warboys et al., 1999. They used the mentioned criteria to evaluate the

workflow of the business process. Al Humaidan,2006 suggested the soft perspective to be

added for evaluation the workflow system. The soft perspective is presented by the

application of SSM techniques to develop the conceptual model which is mapped into UML

diagrams. There are many extensions of the work which have been reported by several

researchers. Like Penkov et.al, 2007 investigated the combination of SSM and UML

extensions which comprising a systemic framework which was proposed by Penker et.al in

2000 for the purpose of modeling a business process of manufacturing factory. Wade et.al

in 2009 described SSDDD as an approach for the development of information system

seeking to model the system processes as domain model. The domain model developed by

developers and the domain experts using the UL (Ubiquitous Language) of the DDD

approach which supported the communications between several stakeholders. Various

business process models were used a number of diagrams which are defined by UML and

function as a part of SSDDD, but are unable to handle the soft issues related to the

problematic situations. SSM usually can handle the problematic situation as stated by Evan,

2004 and Humaidan, 2006. The main purpose of using SSM in SSDDDF is to model business

domain using rich pictures, conceptual model, and root definitions. Based on this

clarification, the adopted evaluation framework combined the required criteria in order to

handle all aspects related to the comparison between DDD and the proposed framework as

an ISD approach..

6.3 Evaluating SSDDDF through teaching ISD module

This section presented the evaluation of the proposed framework SSDDDF through teaching

ISD module ‘Methods and Modelling’ for Master students in the Informatics Department at

the University of Huddersfield. The purpose of this evaluation part is to gain detailed

194

feedback and reflections about the framework tools after studying and practising them

during the semester class work and assignments. This evaluation is to continue and repeat

the cyclic process of Action research, as discussed in chapter three: plan, act and observe ,

and gain reflections. This evaluation part was used a group of methods of data gathering

including In-Class surveys, reflective essays, analysis of common mistakes, and a feedback

questionnaire. The aim is to collect more feedback and reflections from larger category of

developers to support the framework comparison process with other frameworks.

Teaching business information systems modelling using UML will not lead to a complete

understanding or enable the students or developers to implement a software system

combining all the business experts’ requirements. However, it may be argued that using an

integrated framework in teaching business domain investigation and modelling can enhance

understanding of such problematic situations and may lead to the development of a

substantial software system. Based on this view, a group of MSc Advanced Computer

Science and MSc Information Systems Management students, thirty eight, done the module

‘Methods and Modelling’ in September, 2011. The lecturer of the module was Dr. Steve

Wade with the current researcher as teaching assistant. The module has been taught using

the proposed framework SSDDD through practising it’s different tools (SSM, UML, Naked

Objects as an Implementation Pattern). By using this integration for teaching systems

modelling, it was expected that the students would be able to see the whole systematic

picture of the business domain, modelling would be understandable, and this would lead to

a sufficient business domain model for coding the required software system. The evaluation

techniques used during and at the end of teaching the module are presented in the

following sections. This include In-class surveys, reflective essays, analysis of common

mistakes, and feedback questionnaire.

6.3.1 In-class Surveys

Frequent in-class surveys were designed and used to evaluate the students’ weekly

satisfaction. This technique guided the teaching process in order to improve students’

learning. This method depended on open-ended questions to obtain the students’ feedback.

From these it was apparent that the focus on identifying patterns to help students through

difficult techniques was helpful. The majority of the students (approximately 60%) claimed

to have had no prior experience of developing business models, but after completing the

module, 86% said they felt confident with the use of soft systems techniques. There was

195

100% agreement that the ongoing feedback provided in this module was very useful.

Typical comments included”:

“I like the step-by-step approach where we move forward slowly with help at each stage. I

think I would have become confused if I had to do all the work at the end.”

“It helps to chunk up the work with patterns. Each pattern seems to make sense and when

you put them all together you can make something happen.”

As lecturers, we found that the approach taken was very time-consuming and might be

difficult to implement when working with larger groups. Our focus on ways in which we

could develop pattern-based teaching materials did lead us to spend more time looking at

the students’ work than we might otherwise have done. This helped us to see more clearly

what techniques the students found hard to understand.

6.3.2 Reflective Essays

At the end of the course the students were asked to write a short reflective essay including

a discussion about the module and how they used the techniques to develop their projects.

This technique allowed the students to give their feedback about the techniques that they

have been used. In addition, the evaluation had to include a wider discussion on topics such

as:

How well the module related to other modules on their course? How the knowledge and

skills taught on the module related to their previous experience as a student and/or

employee? The appropriateness of the knowledge and skills taught on the module for future

employment. Any particular aspects of the module that they found difficult. Specifically, any

aspect of the real world that they wanted to capture in the models that they developed, any

steps in the process that seemed to be a waste of time, or any additional steps that they

thought might have been useful.

These essays provided generally positive feedback about the framework. The following

comments are representative of some of the more general comments made in these essays:

“All of the techniques have proved very useful for me. I know how to design systems

properly now.”

196

“I have learned a lot from working in groups and following the method. I think this is the

most important module because it links everything together.”

“Before I started the module I did not know what modelling was or how it related to

programming. I feel confident now that I can apply the techniques we have looked at on a

real project.”

Generalisations about the two groups were made and they were presented as follows:

- “The MSc Advanced Computer Science students were more comfortable with abstraction in

the sequence and class diagrams. They seemed to regard modelling as high-level

programming”.

- “MSc Information Systems Management students were more comfortable seeing sequence

diagrams and class diagrams as models of the real world”.

In future presentations of the module it is proposed to create mixed groups so that each

student gets to work with students on a different course.

6.3.3 Analysis of Common Mistakes in Classwork

The analysing of students final course work recognised different mistakes in their work. The

purpose here was to find the reasons behind these mistakes and if they were related to the

framework’s techniques. This helped the researcher to determine how to improve the

teaching of the module next time, and suggested an agenda for improving the SSDDD

framework. A list of common errors would include the following:

• “Failure to use domain-specific terminology as presented in case study materials.

• Inconsistencies between sequence diagram and class diagram. For example,

operations appearing in the sequence diagram that are not present in the class

diagram.

• Operations given ambiguous names.

• Operations not supported by attributes or relationships.

• Database concepts (pk and fk) used in the domain model.

• A lack of consistency between the SSM models and the use case model”.

As a future work, this work suggest the development of pattern languages that will steer

future students away from making these types of mistake.

197

6.3.4 Feedback Questionnaire

A questionnaire is designed to further evaluate the proposed SSDDD framework as an

integrated approach for information systems development. The design of the questionnaire

is focused on the various components of the framework and the contribution of each to

achieving the module’s aim. The questions included in the feedback questionnaire were

derived from the module’s components and from the students’ interaction during the

course. Students’ remarks and observations helped in the design of the questionnaire,

which was used to evaluate the extent to which the module aim had been achieved.

The module’s aim is: (To provide students with the knowledge and critical understanding of

modern software and IS development methods, and skills to practice what they have

learned in an integrated project). In teaching, there are different factors that may affect the

achievement of any module aim. In the case of the ‘Methods and Modelling’ module for MSc

students in the Department of Informatics at the University of Huddersfield, the

investigation focused on one of these factors, which was the ‘teaching approach’

represented by the integrated SSDDD framework. It was believed that using the SSDDD

framework, which combined different tools of systems modelling and development, would

contribute to the achievement of the module aim. This framework was evaluated through

teaching addition to the previous evaluation of it as an approach for information systems

modelling and development. Since the aim of the module is clear, it was assumed that if the

components of SSDDD framework were understood and practised effectively, then this

would contribute to the achievement of the module aim.

At the end of the module, a feedback questionnaire was distributed among students to

collect data about the contribution of each component of the framework to the achievement

of the module aim. The Likert approach, which consists of five rankings, was used for this

purpose: 5=Strongly Agree, 4=Agree, 3=Don’t Know, 2=Don’t Agree, and 1=Strongly

Disagree. The data was analysed using SPSS statistical software. Means and standard

deviation were proposed to analyse the descriptive data collected through 30 valid copies of

the questionnaires out of 33 responses. The total number of students studying the ‘Methods

and Modelling’ module between September 2011 and December 2011 was 38; 33 of them

participated in this investigation, of which 30 responses were valid and used in this analysis.

The results of the analysis are presented in the following section.

198

6.3.4.1 Feedback Questionnaire Data Analysis

To validate the contribution of understanding and practising of each component or activity

of the framework in achieving the module aim, ‘Means and Standard Deviation’ were used

for the different sections, each of which related to one component or activity. Tables 6-1, 6-

2, 6-3, 6-4 and 6-5 present the descriptive analysis related to each component and activity

respectively.

Table 6-1 shows that the means for the first component understanding and practising (SSM)

were between 4.27 and 3.47. The highest mean was 4.27 for item numbers 1 and 3, which

were “I found the tools of SSM were easy to use” and “I can see how SSM tools would help

me to understand customer requirements”, while the lowest mean was 3.47 for item

number 8, which was “I am confident that I could use SSM conceptual models to depict the

detailed logic of business processes”. The arithmetic mean for all items related to SSM tools

was 3.93.

Table 6-2 shows that the means for the second component understanding and practising

(UML) were between 4.30 and 3.43. The highest mean was 4.30 for item number 1, which

was “I found that UML is easy to use for modelling business processes”, while the lowest

mean was 3.43 for item number 4, which was “I found it easy to extract use cases from the

SSM conceptual model”. The arithmetic mean for all the items related to UML tools was

3.86.

Table 6-3 shows that the means for the understanding and practising the activity (linking

SSM and UML) were between 3.83 and 3.57. The highest mean was 3.83 for item numbers

2 and 6, which were “I found that some of the activities in the conceptual model did not

map directly to use cases” and “I found it useful to use SSM at the beginning to investigate

the business domain and to move to UML and implementation”, while the lowest mean was

3.50 for item number 4, which was “I found that the adopted method for transition is easy

to use and practice”. The arithmetic mean for all items related to linking SSM and UML tools

was 3.67.

Table 6-4 shows that the means for the understanding and practising the fourth

component(Implementation Pattern) were between 3.63 and 3.60. The highest mean was

3.63 for item numbers 1 and 4, which were “I found the implementation pattern is easy to

adopt and use for implementation (Name of pattern :---------------)” and “The interfaces

generated by the implementation pattern are easy to use”. The lowest mean was 3.60 for

199

item numbers 2 and 3, which were “I found moving from domain model (class diagram) to

code is easy and not complicated” and “I found the implementation pattern easy to

represent the domain model processes in code”. The arithmetic mean for all items related to

implementation pattern was 3.62.

Table 6-5 shows that the means for the fifth component(the integrated framework) were

between 4.07 and 3.87. The highest mean was 4.07 for item number 4, which was “I found

that this framework helped me to see an integrated picture of the required system in the

project”, while the lowest mean was 3.70 for item numbers 2 and 3, which were “I’m

confident that this framework can be used to develop a complete software support system”

and “I’m confident that all the systems components (soft and hard) can be investigated,

modelled and implemented using this framework”. The arithmetic mean for all items related

to the integration of all components was 3.83.

200

 Table 6-1: Means and Standard Deviations Relating to understanding and practising

SSM Component

201

Table 6-2: Means and Standard Deviations Relating to understanding and practising UML

component

Table 6-3: Means and Standard Deviations Relating to understanding and practising the

linking of SSM and UML

202

Table 6-4: Means and Standard Deviations Relating to understanding and practising the

implementation pattern

Table 6-5: Means and Standard Deviations Relating to understanding and practising the

framework as an integrated ISD framework

203

The above statistical analysis indicates that the SSDDD framework used to teach the

‘Methods and Modelling’ module can contribute to the achievement of the module aim as

proposed at the beginning of this investigation. It indicates that the framework, as a guided

learning approach, is acceptable as a framework for ISD. The results of this statistical

analysis will be matched to the findings related to other techniques in the discussion

(Chapter 7).

6.3.4.1 UML tools ranking

In relation to the second component of the framework(UML diagrams), question number 9

asked the students to identify which was the most important diagram among a given set:

“Which UML diagram do you believe is the most important one for business domain

modelling among other UML diagrams?” The students’ answers to this were ranked from the

highest to the lowest mean, and Table 6-7 shows the results.

Table 6-6: Most Important UML Diagrams from Highest to Lowest

Table 6-6 shows that the most important diagram for business domain modelling, among

other UML diagrams, was considered to be the ‘use case diagram’, with a mean of 4.57 and

standard deviation of .73, which is statistically significant. The lowest ranked diagram was

the ‘collaborative diagram’, with a mean of 1.60 and standard deviation of .93, which is also

statistically significant. These results are presented in Figure 6-1.

204

 Figure 6- 1: Most Important UML Diagrams from Highest to Lowest

6.3.5 Conclusion

This part has been evaluated the SSDDD framework as an ISD approach through teaching

the module ‘Methods and Modelling’ for Informatics Master students. ISD. This evaluation

has adopted different tools to collect and analyse feedback data from the respondents.

During the course, three tools were used to investigate the students; these comprised in-

class surveys, reflective essays, and analysis of common mistakes in classwork. These

techniques provided feedback from students that would be reflected in the comparison of

SSDDD, future work, and any enhancement of the framework. In addition, the different

types of mistakes and reasons behind them have been highlighted, and future work will try

to address these issues. Finally, a feedback questionnaire was distributed to the students

and analysed using SPSS software to focus on the importance of all tools of the framework

separately and the framework as an integrated one. The statistical calculations focused on

the contribution of the SSDDD framework to achievement of the ‘Methods and Modelling’

module’s aim. The results indicates the acceptance of the framework as an ISD approach

with different comments and remarks that will be for the future work. Detailed discussion

and matching of all of these results will be presented in Chapter 7.

0

5

M
e

an

Item

205

6.4 Comparing SSDDDF with DDD

In both the frameworks, business domain perspectives are modelled and implemented into

an information system to support different organizational functions. It was discussed in

Chapter 2 that business domains, and the information systems implementing them, consist

of ‘hard’ and ‘soft’ perspectives. In order to make a comparison between DDD and SSDDDF,

these perspectives have been formalized as described in the following section. This

formalization enables these perspectives to be used as the basis of the first comparison,

which considers the frameworks as approaches for modelling and implementing the

business process perspectives of any business domain. The comparison will be presented as

follows: section 6.3.1 presents the business domain perspectives(criteria), while sections

6.3.2 and 6.3.3 show how DDD and SSDDDF respectively handle each perspective through

the modelling and implementation of a business domain. Finally, section 6.3.4 show how the

proposed evaluation criteria is used to compare DDD and SSDDDF as an ISD approach with

explanation how each perspective handled.

6.4.1 Business Domain Perspectives(Evaluation criteria)

As discussed in Chapter 2, various authors agree that the business process of any business

domain comprises of different perspectives (Curtis, 1992; Warboys et al., 1999). These

perspectives are discussed and summarised in Chapter 2, where they are identified as

functional, organizational, behavioural and informational views. These have been adopted

by other researchers and used to model and implement business processes of the business

domain (Al Humaidan, 2006). This thesis will briefly present these perspectives and

introduce a new ‘soft perspective’, as suggested by Al Humaidan (2006), to model the

business process as a workflow system. In this research, the business process has been

modelled using SSDDDF as a ‘business domain system’ to be used for implementation.

Then, the way in which these perspectives are handled by both DDD and SSDDDF will be

presented in tabular form. The comparison will use these tabulations to reach a conclusion

about the performance of DDD and SSDDDF as approaches to modelling and implementing

the business process of the business domain. The following table (6-7) represents business

process perspectives 2-4, as presented by Curtis (1992) and Warboys et al. (1999), and

adds the soft perspective (no. 1) proposed by Al Humaidan (2006) and Salahat et al.

(2009), which includes SSM to model the soft perspective. In addition, the implementation

perspective (no. 6) is proposed for including an implementation pattern. The soft and

implementation perspectives included in this table are based on the notion of modelling and

206

implementing the ‘business process of the business domain’ as ‘a business domain system’.

In the below table (6-7), the perspectives 2-4 are by Curtis (1992) and Warboys et al.

(1999).

6.4.2 Modelling and Implementing ‘Business Domain’ Perspectives

using DDD

Chapter 2 explored the role of ‘domain-driven design’ as a software development approach

to the investigation of modelling and implementation of any investigated business domain.

It consists of different layers and aims that concentrates on the domain layer before the

commencement of implementation. The different business process perspectives are

presented in Table 6-7, where DDD can handle these perspectives up to different levels. All

the business perspectives, except the implementation, belong to the domain layer. The

other DDD layers (interface, application and infrastructure) belong to the implementation

perspective. Thus, the domain layer contains the concepts of the business domain, business

rules and use cases, state and behaviour of business entities and information about the

business situation. The domain layer attempts to model the business domain into a ‘domain

model’ that can be implemented through the implementation layer using any pattern. Table

6-8 presents the management of each business domain perspectives by DDD.

6.4.3 Modelling and Implementing ‘Business Domain’ Perspectives

using SSDDDF

Systemic soft domain driven design framework (SSDDDF) is a new proposed framework

designed to enhance the DDD approach by handling the soft issues of the business domain.

This approach was demonstrated in chapter 4 and evaluated as a ISD approach in chapter 5

using different student projects. The results of these evaluations are used now and

presented in a tabulation form. The application of the framework, and its capability of

handling the processes within the business domain perspectives, is presented in Table 6-9.

Based on this comparison of the two frameworks as development approaches, section 6.2.4

will show how the adopted evaluation framework is used to evaluate both approaches to

understand the enhancement of SSDDD framework as compared to the existing DDD.

207

Table 6-7: Business Process Perspectives

208

Table 6-8: Handling of each Perspective by DDD

209

Table 6-9: Handling of each Perspective by SSDDDF

210

6.4.4 The application and using the evaluation framework to

Compare DDD with SSDDDF as an ‘Information Systems

Development’ Approach

DDD and SSDDDF were compared on the basis of the modelling and implementation of

‘business domain’ perspectives. It was discussed in Chapter 2 that business domains, and

the information systems implementing them, consist of ‘hard’ and ‘soft’ perspectives. In

order to make a comparison between DDD and SSDDDF, these perspectives have been

formalized as described in Table 6-7 which presents a summary of these perspectives. DDD

was discussed and described in chapter2, and these information are used now to see how

DDD handle the business perspectives(the comparison criteria) which is presented as a

tabulation form in Table 6-8. The proposed framework SSDDD is evaluated and

demonstrated with a case study in chapter 4 and further evaluated as an ISD approach

through different students projects in chapter 5 and valuable information were obtained

through this evaluation. In this chapter, the framework is re-evaluated through teaching

ISD module and valuable information were gained and used during the comparison process.

First, these information were used to see how the SSDDD framework handled the proposed

evaluation criteria (business perspectives) and it is presented as a tabulation form in Table

6-9. By Using the information obtained and presented in Table 6-8 and Table 6-9, the

comparison between the DDD and SSDDD was presented in Table 6-10 based on the

utilized comparison schema. The schema used to compare DDD and SSDDDF was

developed based on the research of Al Humaidan (2006) and Likert scale values. The

current research utilizes this means of comparison, as it provides a clear and precise

information required to assess the performance of the proposed mechanism. The schema

considered Likert scale values to be assigned both to DDD and SDDD based on their ability

to handle the related issues of any given perspective(soft perspective, organizational

perspective,…etc).The schema was defined as follows:

1- 4 points: if the framework handles all issues of the business domain perspective

2- 3 points: if the framework handles more than half of the issues of the business

domain perspective

3- 2 points: if the framework handles at least half of the issues of the business domain

perspective

4- 1 point: if the framework handles less than half of the issues of the business domain

perspective

211

5- 0 points: if the framework does not handle any of the issues of the business domain

perspective

Table 6-10: Comparison between DDD and SSDDD

Firstly, neither approach can be considered as 100% perfect for the information system

development. Further improvements can be made via rigorous investigation of the issues.

The allocation of points and different perspectives are explained and justified below:

1- The soft perspective is entirely dependent on SSM techniques, which support the

users’ involvement in determining the problem and stakeholders’ roles, and

investigating the problem through the development of rich picture, root definition,

conceptual models and the CPTM. The use of feedback and acceptance of the models

being developed is important before proceeding to UML modelling and DDD

implementation patterns. Based on this, SSDDD was given a score of 4. In contrast,

DDD does not adopt SSM. Thus, while user involvement is still available, it cannot be

guaranteed that the users will be able to understand all the methods and techniques

used to develop the domain model. It is estimated that users may be able to

understand half of these but not all, so the score given here is 3.

2- The organizational perspective is handled by both DDD and SSDDD through UML

modelling techniques. Since this perspective focuses on who will perform the

business process activities and where (the organizational structure), the use case

diagram represents these activities and their actors. In addition, this perspective can

be modelled using the class diagram by assigning tasks to users using the role

212

concept. SSDDD utilizes use case and class diagrams, while DDD uses only class

diagrams. Both approaches are therefore given 4 points because they model this

perspective using UML tools.

3- The behavioural perspective is handled by SSDDD through SSM and UML modelling

techniques. Since this perspective deals with the timing of execution of business

processes, the sequence diagram (timing) and activity diagram are used to model all

activities depicted in the use case diagram. The SSM conceptual model deals with

this perspective partially, but detailed modelling is done by UML (sequence and

activity) diagrams. In contrast, DDD depends only on the class diagrams, which can

show the behaviour of these activities but is more reliant on data, such as entities,

types of data, data structure, etc. For this reason, SSDDD is given 3 and DDD is

given 2. This research believes that the behaviour cannot be standardized or fixed,

as a variety of circumstances may occur which cause the change of direction.

4- The informational perspective deals with the informational entities required (entities

within the structure and their relationships), so the tabulation of activities presented

in use case proformas and class diagram are used to model this perspective. Both

DDD and SSDDD use the UML class diagram to model this perspective. Based on

this, 3 points are given for both the approaches. As some information is still not

recognized by either of the approaches, they cannot be considered complete.

5- The functional perspective deals with business process activities and information

flow, and these activities are depicted in SSM conceptual models and modelled using

the UML activity diagrams. The SSDDD framework models this perspective using

both SSM conceptual models and the UML activity diagram, but DDD depends on the

class diagram, which partially or indirectly depicts these functions. Because of this,

SSDDD is given 4 points while DDD is given 3 points.

6- The implementation perspective deals with implementation of the domain model into

an information system using a DDD implementation pattern. SSDDDD considers two

DDD implementation patterns, Naked Objects and TrueView, while DDD leaves it

open for users to select the implementation pattern from a range of different

available patterns. Based on this, both SSDDD and DDD perform the implementation

perspective and because of this, both are given 3 points. However, some of the

students who developed projects during the evaluation period complained about

213

SSDDD restricting them to the use of these two implementation patterns; they said

the choice of options should be kept open because it would take them more time to

master new patterns.

Overall, SSDDD earned 21 out of 24 points while DDD earned 18 out of 24 points.

Therefore, the enhancement of DDD as an information system development approach was

achieved. The improvement percentage was calculated as follows:

The performance of SSDDD was calculated as 21*100/24=87.5%, while that of DDD was

calculated as 18*100/24=75%. Thus, the percentage of improvement to DDD by adopting

the new SSDDD framework as an information system development approach is 87.5%-75%

= 12.5%. There are various areas in which further improvement can be achieved, and these

are presented in Chapter 7 in the form of recommendations and suggestions for future

work.

6.5 Comparing SSDDD with Existing ISD Approaches

The proposed framework SSDDD is mainly compared to DDD and a criteria is applied since

the purpose of this work is to see if the SSDDD enhanced DDD. Also, brief comparisons of

SSDDD and other ISD models discussed in chapter2 were done here to see how SSDDD is

different and to link it to the existing knowledge.

6.5.1 Comparison with SSADM (Structured Systems Analysis and Design Method)

SSADM, a traditional methodology, is well-structured but has several drawbacks. The

method places considerable emphasis on planning and analysis, which requires eminent

time and cost before constructing an information system. From a management perspective,

the approach allows rigorous planning and prediction of schedule and budget for the system

development. However, it may be argued that because this approach requires the project

manager to plan a lot of the work and activities involved in the system’s development, this

will take a lot of time and then there may be problems in making any changes to what has

been planned. It also places less emphasis of the changing requirements and has less

flexibility in the framework. Moreover, the understanding of the framework is difficult and

requires initial training and learning for effective utilization.

On the other hand, the proposed SSDDD framework places adequate amount on planning

while focusing more on requirement analysis, thus creating room for any modifications in

the future, as per the requirement changes. Also, the framework is easier to understand,

214

though requiring learning, it may be comprehended with less difficulties, as inferred from

the current case studies.

6.5.2 Comparison with Agile Methodologies

A number of development methods have been proposed, which use UML with varying

degrees of agility. One of agile methodologies is ‘Extreme Programming-XP’ which

emphasizes on iterative and incremental development methods and provides explicit and

hands-on methods for developers. Another agile methodology is ‘Feature-Driven

Development-FDD’ which is developed by Jeff De Luca (1997). FDD is a management-

supporting tool that suggests a specific framing of the process as well as iterative

development, but does not provide guidance in respect to specific development methods.

However in the existing agile methodologies, all the modern development methods

recognize that business software requirements are highly volatile. This approach is flawed

because users increasingly find themselves in changing business situations and are

therefore unable to identify unalterable requirements. The model of software development

as an adaptive process, in which detailed requirements emerge iteratively as a project

progresses and are modified as learning takes place, seems much more appropriate. These

methodologies focus on making the development process shorter than traditional hard

approaches. However, none of these, nor any of the others, have tried to solve the problem

of soft system aspects.

Therefore there is a need for a methodology that has increased emphasis on ‘use cases’ and

‘iterative’ development techniques. Use case is referred to as a piece of functionality that

provides meaningful value to a user. The current methodology (SSDDDF) integrates UML

with SSM and utilizes use cases to deal with the dynamic user requirements in the most

efficient manner.

6.5.3 Comparison with Multiview methodology

Both the soft and hard aspects of building the system are incorporated in the Multiview

methodology by working in alignment with the soft system methodology and Yourdon

Systems Modeling. The major constraint of Multiview methodology is that it is unable to

provide the tools and techniques to be used for implementation of the information system.

Also, it provides less flexibility between the different phases with inconsiderate thought on

how to iterate between the stages. The proposed SSDDD framework is efficient in these

terms and provides higher flexibility. It offers implementation tools that are compatible with

215

the other components of the systems. However, this can also be a drawback as the

proposed methodology offers only two options (Naked Objects and Trueview) of

implementation patterns.

6.5.4 Comparison with SWM (Soft Workflow Methodology)

The soft workflow methodology addresses only two major concepts, which are

organizational business processes and workflow system modelling, the rest of the process is

structured and if managed inefficiently, can lead to system failure. Also, the approach is not

evaluated or verified using case studies, therefore, having no real time application to judge

its performance. Without the implementation of the framework to a single case study, the

SWM method cannot be generalized to other situations. Apart from these, the framework

fails to incorporate all the eleven perspectives of the workflow system (as mentioned in the

research by Al-Humaidan, 2006). The framework handles few of these perspectives along

with soft perspective. The reason behind this is that the framework has not been applied in

the real world scenario.

The proposed methodology surpasses this issue as it addresses all the mentioned

perspectives by implementing the framework in the real case studies. All the case studies,

peer tutoring system, school’s liaison coordination system and student association system

have evaluated all the perspectives while emphasizing on the user requirements of the

information system.

6.6 Conclusion

This chapter has presented the importance of the students feedback and reflections to

evaluate the planned actions through action research, and the justification of the select

criteria and framework to compare the SSDDDF with DDD and the existing frameworks.

Then this followed with further evaluation through teaching the module as an ISD for Master

students and feedback and reflections were collected through different data gathering

techniques. Then, the SSDDDF is compared with DDD as an information systems

development approach. The comparisons between the proposed methodology and the

existing multimethodologies have been presented to comprehend the contribution made by

the current study. This comparison is a part of the process of evaluating SSDDDF which has

been considered in Chapters 4 and 5, and now in Chapter6. The results of the SSDDDF

evaluations presented in all these chapters (4, 5 and6) will be combined and discussed

further in Chapter 7.

216

Chapter 7: Conclusion

7.1 Introduction

The present research has investigated improvements to domain-driven design (DDD), as an

information system development approach, by considering both, soft and hard perspectives

of the business domain. As a result of this investigation, a new framework has been

proposed and evaluated as an approach for ISD development. The framework is named

‘Systemic Soft Domain-Driven Design’, and it combines soft system methodology, unified

modelling language and a domain-driven design implementation pattern to address business

domain perspectives. This chapter provides an overview of all the results of SSDDDF

evaluation, followed by a discussion of these results. Then, the contribution of this research

is conceptualized and explained. Finally, the limitations of the new SSDDD framework and

recommendations for future work are presented, followed by the concluding remarks.

This thesis has proposed and developed the SSDDD framework as an approach to

information system development. The research aimed to answer the two research questions

in order to fill the aforementioned gaps in knowledge. These research questions are:

Q1: How can we formulate a multimethodology framework that will allow us to investigate,

analyse, model, and implement the business processes from a specific domain by

considering all the relevant “soft” as well as “hard” system requirements?

Q2: What benefits can we demonstrate from applying the proposed framework in a number

of ISD projects?

The tow gaps in knowledge, as determined and summarised in Chapter 2, are as follows.

Gap 1: this research builds on the framework presented in ‘Domain-Driven Design’ (Evans,

2004) but, as the author has disclosed, there is room for improvement in the ‘ubiquitous

language’. With DDD, the stakeholders participating in project development may not

understand the methods and techniques used due to language constraints, and this is

related to their education and work-based experience. This raises the question of whether it

is possible to eliminate these difficulties through the adoption of the proposed development

framework – SSDDD by developing a soft language..

217

Gap 2: one methodology or framework may not be enough to develop a system. All

information systems development methodologies have limitations, and it is expected that

these methodologies can be improved in the future (Avison et al., 1990). This thesis has

tried to improve DDD by understanding and inculcating both the soft and hard requirements

in ISD.

Different stages of evaluating SSDDD have been undertaken over the course of several

years. The framework has been evaluated and compared with DDD and other ISD

methodologies and frameworks as an approach to ISD. The evaluation work is discussed

and presented in Chapters 4, 5 and 6 and is now combined and overviewed in this chapter,

followed by a discussion and consideration of the contribution of this research.

7.2 Results and Discussion

7.2.1 Evaluating SSDDD as an ISD Development Framework Through

Different ISD Projects

Following the literature review, the researcher of this thesis has proposed and explained the

SSDDD framework, and illustrated it through the PTS case study. The illustration shows how

the framework can be used and applied for developing information systems. Then, the

framework has been evaluated again as an ISD framework through different real life

projects undertaken by undergraduate and postgraduate students. Two undergraduate

projects, and another two postgraduate projects, have been presented as a means of

evaluating the framework as an ISD approach, and feedback from the developers about the

application of the framework is given in Chapter 5. This feedback, together with evaluative

comments, is presented in the following subsections as a summary of these evaluations.

7.2.1.1 PTS Development - Feedback from Undergraduate Students

As mentioned in Chapter 5, a group of students selected the PTS system as a graduation

project to be developed using the SSDDD framework. After the students completed their

project, they were asked to provide feedback about the application of SSDDD framework.

Following benefits are revealed:

 Clearer definition of requirements through investigation using soft system

methodology (SSM);

218

 High commitment to the object-oriented approach using UML and the Naked

Objects framework;

 Shorter project lifecycle as requirements are clearly identified from the

beginning, thanks to SSM.

7.2.1.2 Discussion on SSDDD as a framework for PTS undergraduate project

This reflection, based on the students’ achievements, supports the argument for using the

proposed framework as an information system development approach, as it enables the

understanding of both soft and hard issues of the system being investigated. The students

stated that the system requirements were clearer for them because of using SSM at the

beginning, which makes the time required for development shorter. In addition, they

supported the usage of UML as a modelling approach to model the business domain, which

can then be implemented using the Naked Objects implementation pattern. In alignment

with this result, as per the literature review, according to Lucky & Adegoke (2014), the

challenges faced in the development of information systems correspond to the

infrastructures (both hardware and software), and lack of understanding of the user

requirements. The researchers have further determined that developing a complex

information system requires a multimethological approach that is rendered as the most

effective strategy. According to Al-Humaidan (2006), both SSM and UML must be used to

address the hard and soft components of a system and thus increases the clarity of

requirements.

As professed by Xia & Lee (2005), the dynamic business requirements and organizational

needs have created difficulties in developing a system that fulfils all the requirements and

system specifications. Therefore, an information system must be developed that is able to

comprehend all the requirements of stakeholders and organizational goals. The

understanding of soft aspects and integrating it with technical aspects ensures the success

of a project as it addresses the specific needs required from the system. According to Kaur

& Aggarwal (2013), high competitive environment has compelled the organizations in

improving their information systems for meeting the demands of the emerging markets, as

a lack of understanding leads to ISD failure. Understanding the business needs and

inculcating them in the development of information systems contributes to the successful

compilation of the system without any failure. Integrating hard and soft approaches ensures

the same (Hasan, 2003). In the current research, both the hard and soft approaches have

219

been integrated to develop the system, and the results demonstrate the success of the

application, thus supporting the literature.

7.2.1.3 Students Association System (SAS) - Feedback from Undergraduate

Students

The students reported that applying the SSDDD framework helped them to improve their

development and documentation skills. However, they raised the issue that the time

framework allowed to complete this project was not suffient, since they needed to explore

different aspects of Naked Objects, as it was new to them, and required more practice to

improve their professional development. They agreed that applying the framework as an

integrated approach for information system development was good, but that the required

resources must be available, especially original copies of Naked Objects rather than trial

versions. They also said that the software they had developed was a prototype and would

need further enhancement and refinements in the future. They hoped to improve the

system so that it could be available online for any member to access remotel.

7.2.1.4 Discussion on SSDDD as a framework for SAS undergraduate project

It is not easy for all the students at junior developer level to deal with Naked Objects, but if

given enough time, some of them will handle it well. However, the students agreed that

their development and documentation skills were improved by applying the SSDDD

framework. They also supported the idea of using an integrated framework for developing.

They focused on the resources required to use the framework, which must be available and

mastered in advance in order to develop the system properly. According to Avison and

Wood-Harper (1990), it is essential to provide tools and techniques in a framework to

promote efficient implementation of the information system. The ISDM that are unable to

handle the information systems perspectives (both ‘soft’: “human-centred” and ‘hard’:

“technology-centred”) causes the IS failure (Barjis, 2008).

The current analysis is in alignment with the literature as it offers implementation tools,

however, using them needs further learning by the developer. Also, the SSDDD framework

deals with the hard and soft requirements that helps in facilitating the development skills of

the students, as they are able to work with different perspectives. Warboys, Kawalek,

Robertson, and Greenwood (1999) stated that the business process can be defined from

different viewpoints, which are the functional view, organizational view, behavioural view

and informational view. In the current research, all these views are addressed that assists

220

the success of the framework and reduces the chances of failure. Therefore, the existing

studies have supported the result obtained in the present investigation.

7.2.1.5 Schools Liaison Coordination System (SLCS) - Feedback from Postgraduate

Student

The postgraduate student Saraj Din (2009) explains that the purpose of adopting SSDDDF

was to discover if he could use it to develop a software application. In his evaluation, Saraj

Din (2009) mentions that SSDDDF enables the researcher to understand and explore the

problem situation better through SSM. It enables him/her to gain different views of the

current situation through the stakeholder analysis and root definition modelling stages. This

can facilitate an understanding of the business objectives and how activities are done. It

enables the developer to build a better application that suits the users’ requirements, and

even to build a system that improves on those requirements. The UML stage helps the user

to model the system well and to understand the system requirements exactly. However, he

adds that it was difficult for him to use Naked Objects because of the unavailability of

resources, and he himself was not prepared to implement the software using the Naked

Objects implementation pattern because of the time required to master it and to obtain the

resources.

7.2.1.6 Discussion on SSDDD as a framework for SLCS postgraduate project

Looking at the above mentioned problems, it is evident that they are not related to the

nature of the framework, but to the developer himself. Such problems can be solved before

starting any project by ensuring that developers are ready to use the framework

completely, not partially as happened with Saraj. On the other hand, this point can also be

regarded as a positive outcome, because it means the framework is compatible with the use

of other tools for implementation, as happened in this case. This indicates that the

framework can be applied to ISD projects and then other implementation approaches may

be used, rather than the recommended patterns. Also, the current research revealed that

SSDDD framework provides a better understanding of the problem situation due to the

incorporation of SSM. This is in alignment with the literature, where Checkland & Scholes,

(1990) have stated that SSM is a problem-solving methodology which focuses on the soft

issues of a system and is applied to investigate problematic situations. Checkland & Howell

(1998) have also observed the same aspect, that the use of SSM gives high clarity of the

problem and issues in the system that reduces the chances of information system failure.

221

Therefore, it is inferred that the current research is supported by the literature, where the

integration of SSM solves the emerging problems of ISD. Also, the soft language developed

in the research is useful in providing more clarity and thus, compatibility with the system.

7.2.1.7 PTS - Feedback from Postgraduate Student

In his evaluation, the postgraduate student Joseph Ucizi Mtenje (2010) mentions that he

had not previously come across any combination like this. The closest one he had come

across was that used by Lane and Galvin (1999), which combined and transited from SSM

to object-oriented analysis, during which they moved from SSM conceptual models and

developed use cases, but did not proceed to building an application using DDD

implementation software. In SSDDDF, however, the application is built, allowing users to

access business objects without using controllers, an aspect not mentioned by Lane and

Galvin.

Joseph Ucizi Mtenje (2010) adds that SSDDDF has many advantages, but the main one is

that it enables the researcher to understand the problem situation better through SSM, as it

tends to provide different views of the situation from different stakeholders at the root

definition stage, as well as at the DDD stage when it is important to understand the

business objectives and how activities are done. This enables one to build a better

application to suit the users’ requirements, and also to build a system that more effectively

fulfils the requirements that have been studied in the UML stage. The application will even

be easier to use, as it gives the user direct access to business objects and the facility to

manipulate them more easily than through the controllers required in conventional MVC

applications.

 On the other hand, Joseph Ucizi Mtenje (2010) says that the point he found difficult in the

framework was the point of conversion from SSM to UML, as this is not a one-to-one

conversion, but involves combination and decomposition of conceptual models. He advises

that more research is needed in this area, in order to achieve a smoother and easier

transition and to ensure that other developers do not need to spend so much time on it.

This point will be considered in the discussion, and suggestions for future work will include

the development of a pattern language to address this situation.

222

7.2.1.8 Discussion on SSDDD as a framework for PTS postgraduate project

This student did a good job, especially in terms of exploring the transition process from SSM

to UML through the conversion from CPTM to use cases. As he said, he found that this

approach was not easy and needed more time. Regarding this point, this thesis believes

that the solution to this problem is through the development of a pattern language which

can be used to overcome the difficulty. This will be discussed further in the ‘Future Work’

section. Other feedback related to development and implementation encouraged the usage

of the SSDDD framework as an ISD approach. The revelations of this case study is similar

as before, where the proposed framework provided high clarity towards problem situation.

As per the literature review, according to Al Humaidan (2006), SSM is an approach to

business process modelling that can be used for both general problem solving and

management of change. The approach has been most successful in the analysis of complex

situations where there are divergent views about the definition of the problem (i.e. ‘soft

problems’). Therefore, this approach assisted the student in developing the information

system. Considering the difficulty in transition from SSM to UML, Galvin and Lane (1999)

have mentioned that transiting from SSM to UML use cases imposes a problem as these

methodologies are based on different paradigms (‘soft’ and ‘hard’), and will be difficult for

mapping the information gathered by the first methodology to the other one. In alignment

with this study, the current research found that the postgraduate student identified this

problem and required more time to make appropriate transition from one methodology to

another.

7.2.2 Evaluating SSDDD as an ISD Development Framework Through

Teaching ISD module

7.2.2.1 ‘Methods and Modelling’ Module Teaching - Feedback from postgraduate

students

The SSDDD framework has been re-evaluated as an ISD approach through teaching

information systems development module ‘Methods and Modelling’ for a group of

postgraduate students using the proposed framework SSDDD. The purpose here is to verify

the previous evaluation results ,gained from chapter 5, through collecting and analysing

more feedback and reflections from larger category of developers (postgraduate students).

Each student was asked to select one project a mong a group of projects to practise the

framework tools. The feedback and reflections were gathered from the postgraduate

students through different investigation techniques including In-Class Surveys, reflective

223

essays, course work analysis, and feedback questionnaire. In-class surveys were used to

evaluate student satisfaction on a week-by-week basis. The majority of the students

(approximately 60%) claimed to have had no prior experience of developing business

models, but after completing the module, 86% said they felt confident with the use of soft

systems techniques. There was 100% agreement that the ongoing feedback provided in this

module was very useful”. From these it was apparent that the focus on identifying patterns

to help students through difficult techniques was helpful. A reflective essay for the final part

of the coursework portfolio, students were asked to write a reflective essay including a

discussion on how the module reinforced (or otherwise) their appreciation of the techniques

and processes employed in undertaking a development project. These essays provided

generally positive feedback about the framework. The following comments are

representative of some of the more general comments made in these essays: “All of the

techniques have proved very useful for me, and I know how to design systems properly

now” .“I have learned a lot from working in groups and following the method, and I think

this is the most important module because it links everything together.”. “Before I started

the module I did not know what modelling was or how it related to programming, but I feel

confident now that I can apply the techniques we have looked at on a real project” . Based

on this feedback and reflections, certain generalisations about the two groups done the

module can be made as follows:

• The MSc Advanced Computer Science students were more comfortable with

abstraction in the sequence and class diagrams. They seemed to regard modelling as

high-level programming.

• MSc Information Systems Management students were more comfortable seeing

sequence diagrams and class diagrams as models of the real world.

In future presentations of the module it is proposed to create mixed groups so that each

student gets to work with students on a different course. Analysis of the coursework

submitted by the students revealed a number of common mistakes. A list of common errors

would include the following: (Failure to use domain-specific terminology as presented in

case study materials, inconsistencies between sequence diagram and class diagram; for

example, operations appearing in the sequence diagram that are not present in the class

diagram, operations given ambiguous names, operations not supported by attributes or

relationships, database concepts (pk and fk) used in the domain model, and a lack of

consistency between the SSM models and the use case model”. A feedback questionnaire

was distributed to the students and analysed using SPSS software to evaluate the

224

importance of each part of the framework and the framework as an integrated approach for

ISD. The statistical analysis focused on the contribution of the SSDDD framework to the

chievement of the ‘Methods and Modelling’ module’s aim. Statistical analysis through the

‘Main and Standard Deviation’ calculations presented the importance of each components of

the Framework and the integration of all of them in one ISD approach which supported the

previous evaluations finding.

 7.2.2.2 Discussion on ‘Methods and Modelling’ Module Teaching

 While the module was running, the use of in-class surveys on a weekly basis helped the

researcher to know that the majority of students were confident about using soft systems

methodology to model the business domain. This supports the argument of this research

that combining SSM with other methods will support systems development and facilitate a

better understanding of the business domain. With regard to the final reflective essays

prepared by the students, the majority of them stated that the techniques embodied in the

framework were very useful for them, supporting them as they learned to work within

groups and became ready to undertake a complete project. Finally, looking at the final work

produced by the students, and considering the different mistakes they had made, supported

recommendations for improvements to the module in the future. These feedback and

reflections, based on the students’ achievements through the period of the module teaching,

supports the argument for using the proposed framework as an information system

development approach, as it enables the understanding of both soft and hard issues of the

system being investigated. The students stated that the system requirements were clearer

for them because of using SSM at the beginning, which makes the time required for

development shorter. In addition, they supported the usage of UML as a modelling approach

to model the business domain, which can then be implemented using the Naked Objects

implementation pattern. In alignment with this result, as per the literature review,

according to Lucky & Adegoke (2014), the challenges faced in the development of

information systems correspond to the infrastructures (both hardware and software), and

lack of understanding of the user requirements. The researchers have further determined

that developing a complex information system requires a multimethological approach that is

rendered as the most effective strategy. According to Al-Humaidan (2006), both SSM and

UML must be used to address the hard and soft components of a system and thus increases

the clarity of requirements. As professed by Xia & Lee (2005), the dynamic business

requirements and organizational needs have created difficulties in developing a system that

fulfils all the requirements and system specifications. Therefore, an information system

225

must be developed that is able to comprehend all the requirements of stakeholders and

organizational goals. The understanding of soft aspects and integrating it with technical

aspects ensures the success of a project as it addresses the specific needs required from

the system. According to Kaur & Aggarwal (2013), high competitive environment has

compelled the organizations in improving their information systems for meeting the

demands of the emerging markets, as a lack of understanding leads to ISD failure.

Understanding the business needs and inculcating them in the development of information

systems contributes to the successful compilation of the system without any failure.

Integrating hard and soft approaches ensures the same (Hasan, 2003). In the current

research, both the hard and soft approaches have been integrated to develop the system,

and the results demonstrate the success of the application, thus supporting the literature.

By referring to the students problems they faced, and by looking at the above mentioned

problems, it is evident that they are not related to the nature of the framework, but to the

developers themselves. Such problems can be solved before starting any project by

ensuring that developers are ready to use the framework completely, and the resources are

available. Also, the current research revealed that SSDDD framework provides a better

understanding of the problem situation due to the incorporation of SSM. This is in alignment

with the literature, where Checkland & Scholes, (1990) have stated that SSM is a problem-

solving methodology which focuses on the soft issues of a system and is applied to

investigate problematic situations. Checkland & Howell (1998) have also observed the same

aspect, that the use of SSM gives high clarity of the problem and issues in the system that

reduces the chances of information system failure. Therefore, it is inferred that the current

research is supported by the literature, where the integration of SSM solves the emerging

problems of ISD.

7.2.3 Evaluating the Comparison of SSDDD with DDD and other ISD

approaches

The proposed SSDDD framework has been compared to the DDD framework as an ISD

development approach.

The comparison shows that for handling the perspectives of business domain modelling and

implementation, the SSDDDF earned 21 points out of 24 while the DDD framework earned

16 points out of 24. The reason for this is that DDD does not use SSM techniques to model

the soft perspective, and depends only the UML class diagram for modelling the other

perspectives, while SSDDD uses different UML tools to model them. Thus, it may be

226

considered that as an ISD framework, SSDDD has improved on DDD by 12.5%. This

improvement percentage fills the second gap in knowledge. Further improvements can be

achieved in the future, which will be discussed and presented later in this chapter. In

addition, the SSDDDF has introduced ‘soft language’ as a complement to ‘ubiquitous

language’, which fills the first gap in knowledge.

7.2.2.1 Discussion of evaluation based on comparison of SSDDD with DDD and

other ‘IS’ development approaches

SSDDD and DDD were compared to determine their capability of handling business domain

perspectives. The comparison showed that SSDDD improved the capability of DDD as an

ISD approach by 12.5%. This figure represents the difference between the SSDDD and DDD

capability scores, which were calculated to be 87.55 and 75% respectively.

This thesis considers that, as an ISD framework, SSDDD represents a 12.5% improvement

compared with DDD. This outcome fills the second gap in knowledge, ‘DDD improvement’,

as discussed in Chapter 2.

According to Evans (2004), the structure of the ubiquitous language in DDD must be

modified in a simpler manner so as to encourage the interaction for different stakeholders,

especially business experts. In the present work, same has been achieved by introducing

‘soft language’. SSDDD may be seen as an improvement of DDD from the following

perspectives:

- The addition of SSM techniques to model the soft perspectives of the business domain,

instead of depending on the UML class diagram only to model all perspectives.

- The introduction of ‘soft language’ in SSDDD, as a complement to ‘ubiquitous language’,

which fills the first gap in knowledge.

Also, as demonstrated in chapter 6 (section 6.4), the proposed framework compared to

different ISD approach such SSADM, Agile Methodologies, Multiview, and SWF framework.

The brief comparison is done based on their capabilities of handling both ‘soft’ and ‘hard’

systems perspectives, using implementation patterns, and the production of a software

system that has a good chance to avoid software system failure.

The proposed framework SSDDD performs better than these existing information systems

development approaches determined in the literature review.

227

Further improvements can be achieved in the future, and such improvements are discussed

and presented in the ‘Future Work’ section.

7.2.4 Justification of the benefits of the evaluated framework SSDDD

The evaluation suggests the evaluated approach SSDDD has delivered a number of benefits

which support the evaluation criteria adopted to evaluate it. These benefits include the

following:

1- Provide deep and enhanced understanding which can further help the students and

developers so that they are able to apply and implement information system which can

combine the requirements of business experts. The understanding of the problem is

enhanced using the business domain leading to the substantial software system.

2-The applicability of the system is wide including several ranges of situations being

requirement analysis for information system design.

3-Using both the techniques SSM and UML combination provides better outcomes and

enhanced advantages are achieved.

4-Using this framework the whole systematic picture of business domain is understood

better leading to sufficient business domain model so that the required software system can

be coded.

5-The evaluating measures elaborate the applications of the framework subsequently

applying it to the existing concern measures further it also identifies the extensions of the

framework. There is a vast applicability of this framework in the real world development

projects.

The above mentioned benefits conclude the justification of selecting such criteria to evaluate

the proposed framework by highlighting the important benefits of the evaluated framework

SSDDD which support the selected evaluation criteria.

7.3 Research Achievements

As stated above, the development and evaluation of the SSDDD framework has aimed to

answer two research questions in order to fill the mentioned gaps in the knowledge. This

process has enabled certain contributions to be made by this research. These contributions

are outlined as follows:

228

1- The proposal of a multimethodological framework called ‘Systemic Soft Domain-

Driven Design (SSDDDF) to deal with both ‘soft’ and ‘hard’ business domain

perspectives as an improvement of DDD. This framework can be used for

information system development in an efficient manner as it addresses both, the

human and technical aspects of a system.

2- The improvement of DDD as an ISD approach by an estimated percentage of

12.5%.

3- The introduction of ‘soft language’, as a complement to DDD’s ‘ubiquitous

language’, which consists of SSM modelling tools. The inclusion of soft language

has facilitated the communication between the different stakeholders and

developers, thus offering more clarity of requirements that further reduces the

chances of ISD failure.

4- The demonstration and elaboration of a technique to move from SSM CPTM to

UML use case diagram. As the literature revealed that the transition between

SSM to UML imposes certain difficulties, the present research attempted to offer

the approach for the same. However, this aspect poised itself as a complicated

task and can be further improved in the future work.

5- Providing tools of implementation pattern that are compatible with the system.

The tools such as Naked Objects and Trueview have been explained with

screenshots that offers a better understanding of the implementation patterns.

7.4 The limitations of the evaluation framework and criteria

The adopted evaluation framework facing different limitations because of different

circumstances related to this research. The time limit and the impossibility to apply the

proposed framework in real business organizations which caused the evaluation to use

students projects only in order to apply the framework as what done in chapter 4 and 5. In

chapter 6, evaluation of SSDDDF through teaching ISD module is presented and followed

with the comparison of the SSDDD with DDD and other frameworks reviewed in the

literature. The available information about the existing ISD approaches, and the proposed

SSDDD are used to support the evaluations done in chapter 4 and 5. To do so, the

evaluation criteria is proposed to be closed to both DDD and SSDDD and to what done in

229

Chapter 4 , 5 and 6. The following limitations are recorded about the adapted criteria and

the evaluation approach in general.

1- This evaluation framework is limited to place, person performing it, techniques for

judgment, and the availability of information about the compared methods. Based on these

conditions, the contributions of finding may be limited and generalized to the similar cases

only.

2. Using two DDD implementation patterns i.e. Naked Objects and True View by SSDDD is

another limitation as it restricts the developer to use only these two implementation

patterns making the choices very limited. This limited the ability to compare the

implementation results, and this may be affect the results to be not accurate. But the

implementation perspective is an important part to judge the performance of the evaluated

method and can’t be ignored. In the other side, some developers considered this

determination as an advantage since it can provide a good guidance to them.

3. The evaluated framework depends on the available information to be used through the

comparison process and the accuracy of these information may be limited and will affect

the acceptance of the results.

4. There is also the possibility of mismatch of the information attained using various

sources.

5. The evaluation of the framework through teaching suffering from the availability of

enough time to practise the different tools to provide the proper feedback and reflections.

Also, the difficulties they face to convert from SSM to UML.

7.5 Limitations of SSDDDF

The SSDDD framework was proposed on the basis of gaps in the knowledge documented in

the literature, and was further developed and enhanced while practising it through different

illustrative ISD case studies and through teaching and practising it’s tools for a larger

sample of postgraduate Informatics students . However, the work has some limitations,

which are detailed as follows:

- While evaluating the framework as an ISD approach, it was not possible to try it in

the industry since the researcher was working as a lecturer in an academic

environment and was therefore unable to get any organization to adopt the

230

framework and try it with one of their systems. In addition, as the methodology

adopted was action research, this required the researcher to be part of the

development team. It was not possible for the researcher, as a lecturer in a

university, to be granted permission to do that within another organization.

- An issue was raised by the student developers’ in the first evaluation stage regarding

the transition from SSM CPTM to UML use case. Some of them said that this was not

an easy task, as they had not practised it before, and they needed more time to do

it. The ‘Future Work’ section will propose a solution for this.

- With regard to implementation, the use of implementation patterns like Naked

Objects is a good approach, but sufficient time and resources (e.g., original

software) must be available in advance, and students must try it beforehand in order

to be ready for implementation. This is a problem that must be overcome, since the

modelling and development are integrated parts of the framework.

- The conversion process from SSM to UML is an important part and support ISD

process to be more reliable, but the conversion process must be reviewed and new

approaches must be proposed to enhance it as it explained in the future work

section.

The problems mentioned above have limited the contribution of this work, but they have

also opened up areas for further research to be undertaken in the near future. The following

section presents the future work suggested by this research.

7.6 Future Work

The above-mentioned limitations may be overcome if the following recommendations can be

implemented in the future.

- Firstly, regarding real business projects, it is suggested that further attempts are

made to promote the framework, through presentations to different companies, with

the aim of persuading them to try using the framework. This may require some

minor tailoring of the framework to fit with the organizations’ requirements.

- The proposed framework can be applied as a guided learning approach for teaching

with rigorous evaluations.

231

- Different pattern languages should be designed to handle issues with the framework.

This will facilitate the job of the developers and enable learners to overcome some of

the problems mentioned in the ‘Limitations’ section. Pattern languages usually

document the successful practices of any domain, enabling them to be used by

others who need to do similar work. This field is well known in architectural

engineering, as it was introduced many years ago by Alexander, Ishikawa and

Silverstein (1977). It was then mapped to software development patterns (Gamma,

Helm, Johnson & Vlissides, 1994), and subsequently to teaching in the form of

pedagogical pattern language (Bergin, 2001). The proposed pattern languages could

include, but would not be limited to:

- A pattern language to facilitate UML modelling;

- Pattern language to show the conversion process from SSM CPTM to use case;

- Pedagogical pattern language to support the usage of the framework for teaching

ISD.

7.7 Concluding Remarks

The present investigation aimed at developing an information system development

methodology that addresses the existing issues to decrease the failure rate among

information systems. For this purpose, a new framework for business domain modelling and

implementation, SSDDD, has been developed. This framework considers hard and soft

perspectives of the business domain by combining SSM as a guiding methodology with UML

as a modelling approach and a DDD implementation pattern. A soft language has been

proposed to encourage effective communication among the involved stakeholders for the

purposes of understanding the dynamic system requirements. Different implementation

tools such as Naked Objects and Trueview have been explained for understanding their

mechanism and use. Lastly, the framework has been evaluated through different practical

case studies from the academic environment, comprising undergraduate and postgraduate

final projects, and by using and practising it’s tools through teaching ISD module to the

postgraduate students. It is inferred from the investigation that SSDDD is successful in

terms of fulfilling both the hard and soft requirements and generating higher level of clarity

and understanding, when compared with the previous approaches. The results achieved

indicate good potential for the research to be continued in the form of further evaluation

and practice in the business environment.

232

Bibliography

Abrahamsson, P. (2008). Agile Processes in Software Engineering and EXtreme

Programming: 9Th International Conference, XP 2008, Limerick, Ireland, June 10-14, 2008:

Proceedings, Springer Science & Business Media.

Adenowo, A.A. & Adenowo, B.A. (2013). Software Engineering Methodologies: A Review of

the Waterfall Model and Object Oriented Approach. International Journal of Scientific &

Engineering Research, Volume 4, Issue 7.

Aguilar-Saven, R. S. (2004). Business process modelling: Review and framework.

International Journal of production economics 90(2): 129-149.

Ahmed, F., Capretz, L.F., Bouktif, S. & Campbell, P. (2013). Soft Skills and Software

Development: A Reflection from Software Industry, International Journal Of Information

Processing And Management, 4(3), 171-191.

http://dx.doi.org/10.4156/ijipm.vol4.issue3.17

Alexander, C., et al. (1977). A pattern language: towns, buildings, construction, Oxford

University Press.

Al-Humaidan, F. and N. Rossiter (2004). Business Process Modelling with OBPM combining

soft and hard approaches. Proceeding of 1st Workshop on Computer Supported Activity

Coordination (CSAC), 6th International Conference on Enterprise Information Systems,

Porto.

Al-Humaidan, F. M. (2006). Evaluation and development models for business processes.

Al-Mahid, M.T. & Abu-Taieh, E.M. (2006). Information Systems in Developing Countries:

Reasons for Failure – Jordan, Case Study. Emerging Trends and Challenges in Information

Technology Management, 1, 2.

Alter, S. (2006). The Work System Method: Connecting People, Processes, and IT for

Business Results, Work System Press.

Alzubidi, N.H., Recker, J., & Bernhard, E. (2011). A Study of the Use of Business Process

Modelling at Suncorp. Initial Insights. Brisbane, Australia: Business Process Management

233

Research Group. Retrieved from http://apromore.org/wp-

content/uploads/2011/11/Suncorp-project-report-1.pdf

Ambler, S. (2002). Agile modeling: effective practices for extreme programming and the

unified process, John Wiley & Sons.

Ashworth, C. and M. Goodland (1990). SSADM: A practical approach, McGraw-Hill Book

Company Limited.

Avison D.E., Fitzgerald G. (1988) Information Systems development: methodologies,

techniques and tools, Blackwell Scientific Publications

Avison, D. and A. Wood-Harper (1990). Multiview. An Exploration in Information Systems

Development, Alfred W aller Limited.

Avison, D. E., & Fitzgerald, G. (1995). Information Systems Development: Methodologies,

Techniques and Tools, Paul & Company Publishers Consortium.

Avison, D. and G. Fitzgerald (2003). Information systems development: methodologies,

techniques and tools, McGraw Hill.

Avison, D. E., & Taylor, V. (1997). Information systems development methodologies: a

classification according to problem situation. Journal of Information technology, 12(1), 73-

81.

Barjis, J. (2008). The importance of business process modeling in software systems design.

Science of Computer Programming 71(1): 73-87.

Baskerville, R. & Myers, M.D. (2004). Special Issue on Action Research in Information

Systems: Making is Research Relevant to Practice— Foreword. MIS Quarterly, 28 (3), pp.

329-335.

Baskerville, R. & Wood-Harper, A. (1996). A critical perspective on action research as a

method for information systems research. Journal Of Information Technology, 11(3), 235-

246.

Beck, K. (2000). Extreme programming explained: embrace change, Addison-Wesley

Professional.

http://apromore.org/wp-content/uploads/2011/11/Suncorp-project-report-1.pdf
http://apromore.org/wp-content/uploads/2011/11/Suncorp-project-report-1.pdf

234

Bell, T. E., & Thayer, T. A. (1976, October). Software requirements: Are they really a

problem?. In Proceedings of the 2nd international conference on Software engineering (pp.

61-68). IEEE Computer Society Press.

Benington, H. D. (1987). Production of large computer programs. In ICSE (Vol. 87, pp. 299-

310).

Bennett, S. and S. McRobb farmer, R. (2002). Object-oriented System Analysis and Design

2”’Edition. UK, McGraw Hill.

Bergin, J. (2001). A pattern language for initial course design. ACM SIGCSE Bulletin, ACM.

Bhuvaneswari, T., & Prabaharan, S. (2013). A Survey on Software Development Life Cycle

Models. Journal of Computer Science and Information Technology, Vol2 (5), 263-265.

Birrell, N. D., & Ould, M. A. (1988). A practical handbook for software development.

Cambridge University Press.

Boehm, B. W. (1988). A spiral model of software development and

enhancement. Computer, 21(5), 61-72.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the perplexed.

Addison-Wesley Professional.

Brace, C., Bailey, A. R., & Harvey, D. C. (2006). Religion, place and space: a framework for

investigating historical geographies of religious identities and communities. Progress in

Human Geography, 30(1), 28-43.

Bradbury, H. and P. Reason (2003). "Action Research An Opportunity for Revitalizing

Research Purpose and Practices." Qualitative social work 2(2): 155-175.

Brian, W., et al. (1999). Business Information Systems: A Process Approach, London:

McGraw-Hill.

British Computer Society (2006). http://www.bcs.org/

http://www.bcs.org/

235

Brown, K. (1995) Remembrance of Things Past: Layered Architectures for Smalltalk

Applications. The Smalltalk Report,. 4(9): p. 4-7.

Bryman A (1984). The Debate about Quantitative and Qualitative Research: A Question of

Method or Epistemology?. The British Journal of Sociology, 35(1), 75-92.

Bruner, J.S. (1966). Toward a theory of instruction, The Belknap Press of Harvard University

Press, Cambridge, Massachusetts.

Burman E (1997), “Minding the Gap: Positivism, Psychology, and the Politics of Qualitative

Methods” in Journal of Social Issues, Vol. 53, No.4, pp. 785-801.

Burn, J. M. and L. C. Ma (1997). Innovation in IT education-practising what we preach.

Information Resources Management Journal 10(4): 16.

Bustard, D. W., Dobbin, T. J., & Carey, B. N. (1996, April). Integrating soft systems and

object-oriented analysis. In Requirements Engineering, 1996., Proceedings of the Second

International Conference on (pp. 52-59). IEEE.

Bustard, D. W., et al. (2000). Linking soft systems and use-case modelling through

scenarios. Interacting with computers 13(1): 97-110.

Carroll, M. (1996). Peer tutoring: Can medical studies teach biochemistry? Biochemical

Education 24(1): 13-15.

CCTA (1993) Applying Soft Systems Methodology to an SSADM Feasibility Study. HMSO,

London.

Charvat, J. (2003). Project management methodologies: selecting, implementing, and

supporting methodologies and processes for projects. John Wiley & Sons.

Checkland P.B. (1981) Systems thinking, systems practice, John Wiley, Chichester

Checkland, P. (1999). Soft Systems Methodology: a thirty year retrospective. Systems

Research and Behavioral Science, Citeseer.

Checkland, P. (1999). Systems thinking. Rethinking management information systems: 45-

56.

236

Checkland, P. and J. Poulter (2006). Learning for action: a short definitive account of soft

systems methodology and its use for practitioner, teachers, and students, Wiley Chichester.

Checkland, P. and S. Holwell (1997). Information, systems and information systems:

making sense of the field.

Checkland, P., and Scholes J (1990), Soft Systems Methodology in Action, John Wiley &

Sons, New York,

Checkland, P., & Holwell, S. (1998). Action research: its nature and validity. Systemic

Practice and Action Research, 11(1), 9-21.

Chilisa, B. and Preece, J. (2005). Research Methods for Adult Educators in Africa. UNESCO,

South Africa, p 171.

Clegg, S., & McAuley, J. (2005). Conceptualising middle management in higher education: A

multifaceted discourse. Journal of Higher Education Policy and Management, 27(1), 19-34.

Coad, P., et al. (1999). Feature-driven development. Java Modelling in Color with UML: 182-

203.

Coad, P., et al. (1999). Java Modelling Color with Uml: Enterprise Components and Process

with Cdrom, Prentice Hall PTR.

Cockburn, A. (1997). Structuring Use Cases with Goals1.

Cockburn, A. (1999). "Writing effective use cases." preparation for Addison-Wesley

Longman. www. infor. uva. es/~ mlaguna/is2/materiales/BookDraft1. pdf.

Cockburn, A. and J. Highsmith (2001). Agile software development: The people factor.

Computer(11): 131-133.

Coghlan, D. & Brannick, T. (2014) Doing action research in your own organization. 4th ed.

London: Sage.

Cohen, D., et al. (2003). Agile software development. DACS SOAR Report(11).

Cormack, D (2000). The research process in nursing 4th ed, Blackwell Science. Oxford, p

213

237

Creswell, J. W. (2013b). Research design: A qualitative, quantitative and mixed method

approaches. 4th edition. Sage publications.

Curtis, B., et al. (1992). Process modelling. Communications of the ACM 35(9): 75-90.

Davenport, T. h. (1993) Process innovation: Reengineering work through information

technology, Harvard Business School Press, Boston, Mass.

Davenport, T. H. and J. E. Short (2003). The new industrial engineering: Information

technology and business process redesign. Operations management: Critical perspectives

on business and management: 97-123.

Davies, L. and P. Ledington (1988). Creativity and metaphor in soft systems methodology.

Journal of applied systems analysis 15: 31-36.

Davis, G. B. (2000). Information systems conceptual foundations: looking backward and

forward. In Organizational and social perspectives on information technology (pp. 61-82).

Springer US.

Devaraj, S., & Kohli, R. (2003). Performance impacts of information technology: Is actual

usage the missing link?. Management science, 49(3), 273-289.

Dhillon, G. S. and J. Ward (2002). Chaos theory as a framework for studying information

systems. Advanced topics in information resources management 2: 320-338.

Dick, B. (2002). Soft systems methodology. Session 13 of Areol - action research and

evaluation [online] available at: <http://www.scu.edu.au/schools/gcm/ar/areol/areol-

session13.html#a_s13_7s> [accessed on 18th June 2010]

Dogan, H. and M. Henshaw (2010). Transition from soft systems to an enterprise knowledge

management architecture. International Conference on Contemporary Ergonomics and

Human Factors, April.

Donaldson, A. J. M., & Jenkins, J. O. (2001). Systems failures: An approach to building a

coping strategy. In Software Engineering Education and Training, 2001. Proceedings. 14th

Conference on (pp. 187-190). IEEE.

Donnelly, J., & Trochim, W. (2007). The research methods knowledge base. Ohio: Atomic

Dog Publishing.

http://www.scu.edu.au/schools/gcm/ar/areol/areol-session13.html#a_s13_7s
http://www.scu.edu.au/schools/gcm/ar/areol/areol-session13.html#a_s13_7s

238

Erikksonn, H. and M. Penker (2000). UML business process modelling at work, John Wiley

and Sons, New York.

Ertugrul, A. M. and O. Demirors (2015). An exploratory study on role-based collaborative

business process modeling approaches. Proceedings of the 7th International Conference on

Subject-Oriented Business Process Management, ACM.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software,

Addison-Wesley Professional.

Ewusi-Mensah, K. (2003). Software development failures. Mit Press.

Feiler, P. H. and W. S. Humphrey (1993). Software process development and enactment:

Concepts and definitions. Software Process, 1993. Continuous Software Process

Improvement, Second International Conference on the, IEEE.

Fenning, R., Dogan, H and K. Phalp (2014). Applicability of SSM and UML for Designing a

Search Application for the British Broadcasting Corporation (BBC). Enterprise, Business-

Process and Information Systems Modeling, Springer: 472-486.

Fondas, N. (1993). Process Innovation: Reengineering Work through Information

Technology. The Academy of Management Executive 7(2): 100-103.

Fowler, M. (2004). UML distilled: a brief guide to the standard object modeling language,

Addison-Wesley Professional.

Fredrick Tylor (1911) The Principles of Scientific Management, Monograph published by

Harper & Brothers. P 114.

Gamma, E., et al. (1994). Design patterns: elements of reusable object-oriented software,

Pearson Education.

Gardner, H. (1993). Multiple intelligences: The theory in practice, Basic books.

Georgakopoulos, D., et al. (1995). "An overview of workflow management: From process

modeling to workflow automation infrastructure." Distributed and parallel Databases 3(2):

119-153.

239

Giddens, A. (1984). The constitution of society: Outline of the theory of structuration, Univ

of California Press.

Morgan, G. A., Gliner, J. A., & Harmon, R. J. (2006). Understanding and evaluating research in applied

and clinical settings. Psychology Press.

Goodlad, S. and B. Hirst (1989). Peer Tutoring. A Guide to Learning by Teaching, ERIC.

Gorgone, J., et al. (2003). IS 2002 model curriculum and guidelines for undergraduate

degree programs in information systems. Communications of the Association for

Information Systems 11(1): 1.

Goyal, D. (2012). Business alignment and critical success factors in information systems

implementation: an empirical analysis of selected Indian organisations. International Journal

of Business Information Systems 10(4): 397-416.

Gray, R., Kouhy, R. and Lavers, S. (1995). Methodological themes: constructing a research

database of social and environmental reporting by UK companies. Accounting, Auditing and

Accountability Journal, Vol. 8 No 2, pp. 78-101

Greenwood, D.J. & Levin, M. (2007) Introduction to action research. 2nd ed. Thousand

Oaks, California: Sage.

Grinnel, R. M. and Unrau, Y. A. (2008). Social Work research and evaluation: Foundations of

evidence based practice. Oxford University Press: New York

Gummesson, E. (2000). Qualitative methods in management research, Sage.

Gupta M and Gupta D (2011), Research Methodology, PHI Learning Private Limited, New

Delhi, p 32.

Gupta, J. and R. Wachter (1998). A capstone course in the information systems curriculum.

International Journal of Information Management 18(6): 427-441.

Hammer, M. (1990). Reengineering work: don't automate, obliterate." Harvard business

review 68(4): 104-112.

Hammer, M. and J. Champy (2009). Reengineering the Corporation: Manifesto for Business

Revolution, A, Zondervan.

240

Harry, M. (1994). Information Systems in Business, Pitman, London.

Hasan, H. (2003). Information Systems Development as a Research Method. AJIS, 11(1).

http://dx.doi.org/10.3127/ajis.v11i1.142\

Hendricks, K. B., Singhal, V. R., & Stratman, J. K. (2007). The impact of enterprise systems

on corporate performance: A study of ERP, SCM, and CRM system implementations. Journal

of Operations Management, 25(1), 65-82.

Highsmith, J. (2013). Adaptive software development: a collaborative approach to

managing complex systems, Addison-Wesley.

Highsmith, J. A. (2002). Agile software development ecosystems, Addison-Wesley

Professional.

Highsmith, J. and A. Cockburn (2001). Agile software development: The business of

innovation. Computer 34(9): 120-127.

Hoffman, K. and P. Eugster (2009). Cooperative aspect-oriented programming. Science of

Computer Programming 74(5): 333-354.

Holwell, S. and P. Checkland (1998). Information, systems and information systems,

Chichester, England: John Wiley.

Höysniemi, J., et al. (2003). Using peer tutoring in evaluating the usability of a physically

interactive computer game with children. Interacting with computers 15(2): 203-225.

Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., & Booch, G. (1999). The unified

software development process (Vol. 1). Reading: Addison-wesley.

J Martin, C Finkelstein; (1981). Information engineering, Vols 1 and 2, Prentice-Hall.

Jacope Romei (2009). Agile development and Domain Driven Design. Online:

http://www.slideshare.net/jakuza78/sviluppo-agile-e-domain-driven-design Retrieved June,

2015.

Jak Charlton (2010). A practical guide to domain driven design. Online: -thinkddd.com.

Jeff De Luca (1997). Feature-Driven Development.

http://dx.doi.org/10.3127/ajis.v11i1.142/
http://www.slideshare.net/jakuza78/sviluppo-agile-e-domain-driven-design
http://www.thinkddd.com/

241

Johansson, H. J., et al. (1993). Business process reengineering: Breakpoint strategies for

market dominance, Wiley Chichester.

Johnson, B. and Christensen, L. B. (2010). Educational Research: Quantitative, Qualitative,

and Mixed Approaches. London: SAGE Publications.

Jones, D. and A. Newman (2002). A constructivist-based tool for operating systems

education. Proc. EdMedia.

Joseph Ucizi Mtenje (2010). An online application to support a peer-tutoring system for

undergraduate programming modules. Msc dissertation, Informatics Department, University

of Huddersfield.

Jupp, V. (ed.) (2006) The Sage Dictionary of Social Research Methods, London, Sage.

Katina, P. F., Keating, C. B., & Ra’ed, M. J. (2014). System requirements engineering in

complex situations. Requirements Engineering, 19(1), 45-62.

Kaur, B.P. & Aggrawal, H. (2013). CRITICAL FAILURE FACTORS IN INFORMATION SYSTEM:

AN EXPLORATORY REVIEW. Journal of Global Research in Computer Science, 4(1).

Kemmis, S., & McTaggart, R. (2005). Participatory Action Research: Communicative Action

and the Public Sphere. Sage Publications Ltd.

Kettinger, W. J., et al. (1997). Business process change: a study of methodologies,

techniques, and tools. MIS quarterly: 55-80.

Keys, P. and M. Roberts (1991). Information system development and soft systems

thinking: Towards an improved methodology. Systems Thinking in Europe, Springer: 577-

581.

Kingston, J. K. (1995). Modelling business processes using the soft systems approach,

University of Edinburgh, Artificial Intelligence Applications Institute.

Kivuva, T. (2012). Challenges in development and implementation of Information systems

in ad hoc landing and Over-flight clearances in the Kenyan airspace (Doctoral dissertation,

University of Nairobi).

242

Kock, N., et al. (2002). Can Action Research be Successfully Used in Information Systems

Doctoral Research? a Panel Discussion. Informing Science June Q 7.

Koshy, E., et al. (2010). Action research in healthcare, Sage.

Kruchten, P. (2004). The rational unified process: an introduction, Addison-Wesley

Professional.

Laddad, R. (2009). Aspect in action: enterprise AOP with spring applications, Manning

Publications Co.

Lai, L. S.-l. (2000). An integration of systems science methods and object-oriented analysis

for determining organizational information requirements. Systems Research and Behavioral

Science 17(2): 205.

Lane, C. and K. Galvin (1999). Methods for Transitioning from Soft Systems Methodology

(SSM) Models to object oriented analysis (OOA), developed to support the Army Operational

Architecture (AOA) and an Example of its Application. Proceedings of the 1999 Command

and Control Research and Technology Symposium.

Laudon, K., Laudon, J. (2009). Essentials of management information systems (8th ed.).

Upper Saddle River, NJ: Pearson Prentice Hall.

Lavallée, M., & Robillard, P. N. (2015, May). Why good developers write bad code: An

observational case study of the impacts of organizational factors on software quality.

In Proceedings of the 37th International Conference on Software Engineering-Volume 1 (pp.

677-687). IEEE Press.

Lee, D. M., et al. (1995). Critical skills and knowledge requirements of IS professionals: a

joint academic/industry investigation. MIS quarterly: 313-340.

Lewis, P. (1995). Applying soft systems methodology to an SSADM feasibility study: CCTA.

Systems Practice 8(3): 337-340.

Lindsay, A., et al. (2003). Business processes—attempts to find a definition. Information

and software technology 45(15): 1015-1019.

Lonchamp, J. (1993). A structured conceptual and terminological framework for software

process engineering. ICSP, Citeseer.

243

Loos, S., et al. (2005). Three perspectives on peer tutoring for CS1. Proceedings of the

Midwest Celebration of Women in Computing conference, http://www. cs. indiana. edu/cgi-

pub/midwic/papers/uploads/loos. pdf.

Loucopoulos, P. (2003). The S3 (Strategy-Service-Support) Framework for Business Process

Modelling. CAiSE Workshops, Citeseer.

Lucky, E. O. I., Adegoke, O., & Othman, N. (2014). Project management challenges and

difficulties: A case study of information system development. International Postgraduate

Business Journal, 6(1), 99-133.

Lunn, K. (2003). Software Development with UML, Palgrave Macmillan.

Lyytinen, K. and D. Robey (1999). Learning failure in information systems development.

Information Systems Journal 9(2): 85-101.

Manalil, J. (2011). Rational Unified Process. Maidenhead, UK: Open University Press.

Mansell, G. (1991). Action research in information systems development. Information

Systems Journal, 1(1), 29-40. http://dx.doi.org/10.1111/j.1365-2575.1991.tb00025.x

Matković, P., & Tumbas, P. (2010). A Comparative Overview of the Evolution of Software

Development Models. International Journal of Industrial Engineering and Management

(IJIEM), ISSN, 2217-2661.

Maxcy, S. J. (2003). Pragmatic threads in mixed methods research in the social sciences:

The search for multiple modes of inquiry and the end of the philosophy of

formalism. Handbook of mixed methods in social and behavioral research, 51-89.

McPherson, M. and M. B. Nunes (2004). Developing innovation in online learning: an action

research framework, Psychology Press.

Medina-Mora, R., et al. (1992). The action workflow approach to workflow management

technology. Proceedings of the 1992 ACM conference on Computer-supported cooperative

work, ACM.

Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review: Information technology and

organizational performance: An integrative model of IT business value. MIS

quarterly, 28(2), 283-322.

http://dx.doi.org/10.1111/j.1365-2575.1991.tb00025.x

244

Meyer, J. (2000) ‘Using qualitative methods in health related action research’, British

Medical Journal, 320: pp. 178–181. [Online]. Available from:

http://dx.doi.org.ezproxy.liv.ac.uk/10.1136/bmj.320.7228.178 (Accessed: 24 February

2015).

Michiel Uithol (2009). Security in Domain-Driven Design. Master dissertation, University of

Twente.

Mihailescu, D. and M. Mihailescu (2010). A realist conceptualization for studying information

system development methodology. The 1st International Conference on Information

Management and Evaluation (ICIME 2010), Acad Conferences Ltd.

Mike Bennet (2007). Domain Modelling Tools. http://www.hypermedia.co.uk. Retrieved

July,2015.

Miles, R., (1992) Combining “hard” and “soft” systems practice: grafting and embedding

revisited. Systemist 14 (2) 62-66.

Miliszewska, I. and G. Tan (2007). Befriending computer programming: A proposed

approach to teaching introductory programming." Informing Science: International Journal

of an Emerging Transdiscipline 4(1): 277-289.

Mingers, J. (1988). "Comparing conceptual models and data flow diagrams." The Computer

Journal 31(4): 376-379.

Mingers, J. (2000). Variety is the spice of life: combining soft and hard OR/MS

methods. International Transactions in Operational Research, 7(6), 673-691.

Mingers, J., & Brocklesby, J. (1997). Multimethodology: towards a framework for mixing

methodologies. Omega, 25(5), 489-509.

Mingers, J. (2001). "Combining IS research methods: towards a pluralist methodology."

Information systems research 12(3): 240-259.

Mingers, J. C. (1995). Information and meaning: foundations for an intersubjective

account. Information Systems Journal, 5(4), 285-306.

Mingers, J., & Taylor, S. (1992). The use of soft systems methodology in practice. Journal of

the Operational Research Society, 321-332.

http://www.hypermedia.co.uk/

245

Mishra, S. (2004). Visual Modelling & Unified Modelling Language. Online: Accessed on

October, 2010 from : http://www2.informatik.hu-berlin.de/~hs/Lehre/2004-WS

SWQS/20050107UML.PPT

Morgan, G. A., Gliner, J. A., & Harmon, R. J. (2006). Understanding and evaluating research

in applied and clinical settings. Psychology Press.

Munassar, N.M. & Govardhan, A. (2010). A Comparison Between Five Models Of Software

Engineering. IJCSI International Journal of Computer Science Issues, 7 (5)

Mynard, J. and I. Almarzouqi (2006). "Investigating peer tutoring." Elt Journal 60(1): 13-

22.

Naked Objects (2010) Naked Objects MVC - Product description [online] available at:

<http://nakedobjects.net/product/product_intro.shtml> [accessed on 15th August 2010]

Object Management Group (OMG) (2005) Introduction to OMG's Unified Modeling

Language™ (UML®) [online] available at:

<http://www.omg.org/gettingstarted/what_is_uml.htm

Oliver I., Kent, S. (2009) Validation of Object Oriented Models using Animation [online]

available at: <http://kar.kent.ac.uk/21768/1/validation_of_object-oriented_oliver.pdf>

accessed on 24th June 2010.

Oldfield, P., (2002). Domain Modelling, Appropriate Process Group. www.aptprocess.com.

Retrieved on June,2015.

Oqvist, J. (2011). Becoming More Agile With Domain-Driven Design.

Orb, A., Eisenhauer, L., & Wynaden, D. (2001). Ethics in qualitative research. Journal of

nursing scholarship, 33(1), 93-96.

Ould, M. A. and M. Ould (1995). Business Processes: Modelling and analysis for re-

engineering and improvement, Wiley Chichester.

Parkin, P. (2009). Managing change in healthcare using action research. London: Plagrave.

Patel, N. V. (1995). Application of soft systems methodology to the real world process of

teaching and learning. International Journal of Educational Management 9(1): 13-23.

http://www2.informatik.hu-berlin.de/~hs/Lehre/2004-WS%20SWQS/20050107UML.PPT
http://www2.informatik.hu-berlin.de/~hs/Lehre/2004-WS%20SWQS/20050107UML.PPT
http://nakedobjects.net/product/product_intro.shtml
http://www.omg.org/gettingstarted/what_is_uml.htm
http://kar.kent.ac.uk/21768/1/validation_of_object-oriented_oliver.pdf
http://www.aptprocess.com/

246

Patton, M. Q. (2002). Qualitative Research and Evaluation Methods, SAGE Publications,

London.

Pawson, R. and R. Matthews (2002). Naked objects. Companion of the 17th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, ACM.

Platt, D. and D. Blockley (1994). Process modelling in civil engineering design. Design

Studies 15(3): 317-331.

Pressman, R. S. (1994). History of Automated Guided Vehicles.

Prior, R. (1992). Linking SSM and IS development. Systemist 14(3): 128ą132.

Reason, P. and H. Bradbury (2001). Handbook of action research: Participative inquiry and

practice, Sage.

Reason, P. and H. Bradbury (2005). Handbook of action research: concise paperback

edition, Sage.

Reason, P., & Bradbury, H. (2008). Handbook of Action Research: Participative inquiry and

practice 2nd edition. London: Sage Publications.

Robertson, I., et al. (1999). Business information systems: a process approach, McGraw-

Hill.

Rose, J. (2002). Interaction, transformation and information systems development-an

extended application of Soft Systems Methodology. Information Technology & People 15(3):

242-268.

Rosenberg, D. and M. Stephens (2007). Robustness Analysis. Use Case Driven Object

Modeling with UML: Theory and Practice: 101-142.

Royce, W. W. (1970). Managing the development of large software systems. In proceedings

of IEEE WESCON (Vol. 26, No. 8, pp. 328-338).

Ruparelia, N.B. (2010). Software Development Lifecycle Models. ACM SIGSOFT, 35 (3)

247

Ryan, H. W. (1999). Managing Development in the Era of Large Complex Systems. IS

Management 16(2): 89-91.

Sabherwal, R., Jeyaraj, A., & Chowa, C. (2006). Information system success: individual and

organizational determinants. Management science, 52(12), 1849-1864.

Sauser, B. J., Reilly, R. R., & Shenhar, A. J. (2009). Why projects fail? How contingency

theory can provide new insights–A comparative analysis of NASA’s Mars Climate Orbiter

loss. International Journal of Project Management, 27(7), 665-679.

Salahat, M., et al. (2009). "The Application of A systemic Soft Domain Driven Design

Framework." World Academy of Science, Engineering and Technology 57(86): 476-486.

Saraj, Din (2009). MSc Dissertation, University of Huddersfield, 2009.

Saunders, M. and P. Lewis (1945). "& Thornhill, A. 2012." Research methods for business

students.

Scott, M. F. K. and M. Fowler (2000). UML Distilled: A Brief Guide to the Standard Object

Modeling Language, Addison Wesley.

Sensuse, D. I. and A. Ramadhan (2012). The Relationships of Soft Systems Methodology

(SSM), Business Process Modeling and e-Government. IJACSA) International Journal of

Advanced Computer Science and Applications 3(1).

Sewchurran, K. and D. Petkov (2007). A systemic framework for business process modelling

combining soft systems methodology and UML. Information Resources Management Journal

20(3): 46.

Shenton, A.K (2004). Strategies for ensuring trustworthiness in qualitative research

projects. Education for Information 22 (2004) 63–75.

Shoval, P., et al. (2006). Class Diagrams and Use Cases–Experimental Examination of the

Preferred Order of Modeling. Proceedings of CAiSE 2006 workshop on Exploring Modeling

Methods for System Analysis and Design (EMMSAD, Citeseer.

Silverman, D. (2013). Doing qualitative research: A practical handbook. 4th edition. SAGE

Publications Limited.

248

Smeds, R. (1987). The role of computerized information systems in the development of

organizational structure. International Studies of Management & Organization: 90-104.

Somekh, B. (2006). Action research: A methodology for change and development.

Srini Penchikala (2008). Domain Driven Design and Development in Practice. Online article:

http://www.infoq.com/articles/ddd-in-practice

Stamouli, I., et al. (2004). Establishing structured support for programming students.

Frontiers in Education, 2004. FIE 2004. 34th Annual, IEEE.

Štolfa, S. and I. Vondrák (2008). Mapping from business processes to requirements

specification. Retrieved on 7th Aug.

Strong, D. M., & Volkoff, O. (2010). Understanding Organization—Enterprise System Fit: A

Path to Theorizing the Information Technology Artifact. MIS quarterly, 731-756.

Stowell, F. A. and D. West (1995). Client-Led Design: A Systemic Approach to Information

System Definition, McGraw-Hill, Inc.

Tashakkori & C Teddlie (Eds.), Handbook of mixed methods in social and behavioral

research (pp. 51-89). Thousand Oaks, CA: Sage.

Thomas R M (2003), Blending qualitative & quantitative research methods in theses and

dissertations, Corwin Press, California.

Tutorialpoint.com: http://www.tutorialspoint.com/uml/ Retreived July, 2015.

Uithol, M. (2008). Security in domain-driven design.

Ulin, P. R., Robinson, E. T., & Tolley, E. E. (2012). Qualitative methods in public health: a

field guide for applied research. John Wiley & Sons.

van Dillen, E. (2007). Domain Driven Design in de Praktijk.

Van De Kar, E. A. M., & Verbraeck, A. (Eds.). (2008). Designing Mobile Service Systems-

Revised Second Edition (Vol. 2). IOS press.

Volkoff, O., Strong, D. M., & Elmes, M. B. (2007). Technological embeddedness and

organizational change. Organization Science, 18(5), 832-848.

http://www.infoq.com/articles/ddd-in-practice
http://www.tutorialspoint.com/uml/

249

Vonk R. (1990) Prototyping: The effective use of CASE technology, Prentice-Hall, London

Wade, S. and J. Hopkins (2002). A Framework for Incorporating Systems Thinking into

Object Oriented Design. Seventh CAiSE/IFIP8.

Wade, S., et al. (2012). A Scaffolded Approach to Teaching Information Systems Design.

Innovation in Teaching and Learning in Information and Computer Sciences 11(1): 56-70.

Wang, Q., et al. (2014). Research on Domain Driven Design Based Domain Platform

Architecture. 2014 International Conference on Mechatronics, Electronic, Industrial and

Control Engineering (MEIC-14), Atlantis Press.

Warboys, B., et al. Business Information Systems: A Process Approach. 1999, McGraw-Hill.

Williams B. (2005). Soft Systems Methodology. [online] available at: [accessed on 18th

June 2010].

Wilson, B. (2001). Soft systems methodology: conceptual model building and its

contribution."

Wilson, Brian (1990), System: Concept, methodologies and applications. John Wiley, New

York

Winklhofer, H. (2002). "Information systems project management during organizational

change." Engineering Management Journal 14(2): 33-37.

Wysocki, R. R. (2009). Effective Project Management: Traditional, Agile, Extreme (5th ed.).

Indianapolis, IN: Wiley.

Wood-Harper, T. (1985). Research methods in information systems: using action research.

Research methods in information systems: 169-191.

Xia, W. & Lee, G. (2005). Complexity of Information Systems Development Projects:

Conceptualization and Measurement Development. Journal of Management Information Systems,

22 (1), pp. 45-83

Xiaohui, H. (2006). Improving teaching in Computer Programming by adopting student-

centred learning strategies. The China Papers 6: 46-51.

250

Xiaohui, H. (2006). Improving teaching in Computer Programming by adopting student-

centred learning strategies. The China Papers 6: 46-51.

Yusuf, L., Folorunso, O., Akinwale, A., & Adejumobi, I. (2011). Visualizing and Assessing a

Compositional Approach to Service-Oriented Business Process Design Using Unified

Modelling Language (UML). Computer And Information Science, 4(3).

Yourdon, E. (1989). Modern Structured Analysis, Yourdon Press Computing Series.

Zwass, V.(2016). Information Systems. Retrieved from : Encyclopaedia Britannica

(https://global.britannica.com/topic/information-system)

https://global.britannica.com/topic/information-system

251

Appendices

Appendix 1

Feedback Questionnaire

University of Huddersfield- Informatics Department

The module: “Methods and Modeling” for MSc students

Part One: General Information:

Name(Optional):-- Gender:------------------------

Qualification: ---Major:------------------------

Age:------------------------

--

Part Two: Tools and Techniques

This module has been structured around a framework of techniques that guide you through

the systems development process from requirements analysis to system implementation.

The framework combines techniques from SSM, UML, and various implementation patterns

for business system development. We want to continue to develop this framework for use

in teaching and “real world” software development. You can help us to fine-tune the

framework by answering a few simple questions.

Answer the following questions based on this briefing and the knowledge you gained from

the module.

1-Understanding and practicing Soft System Methodology Tools:

Choose (5=strongly agree, 4=Agree, 3=don’t know, 2=Disagree, 1=Strongly Disagree)

1- I found the tools of SSM were easy to use :

(1 2 3 4 5)

252

2- I can see how SSM tools would help me to understand the logic of business processes

(1 2 3 4 5)

3- I can see how SSM tools would help me to understand customer requirements

(1 2 3 4 5)

4- I can see how SSM tools could facilitate communication between business experts and developers

(1 2 3 4 5)

5- I found it easy to understand and communicate with my team using SSM techniques

(1 2 3 4 5)

6- I can see how an SSM Rich Picture can provide a comprehensive overview of a business system

(1 2 3 4 5)

7- I can see that SSM Root definition technique depicts the required system objectives

(1 2 3 4 5)

8- I am confident that I could use SSM Conceptual Models to depict the detailed logic of business processes.

(1 2 3 4 5)

9- I can see how SSM conceptual models represent the business domain processes

(1 2 3 4 5)

10- I am confident that I could use SSM techniques to identify the user requirements

(1 2 3 4 5)

 2- Understanding and practicing UML Tools:

For the following questions: Choose (5=strongly agree, 4=Agree, 3=don’t know,

2=Disagree, 1=Strongly Disagree)

11- 1- I found that UML is easy to use for modeling business processes.

 (1 2 3 4 5)

12- 2- I can see how Use Case diagram can be used to represent system processes.

13- (1 2 3 4 5)

 3- I am confident that UML Use Cases are good tools for business process

modeling

14- (1 2 3 4 5)
15- 4- I found it easy to extract Use Cases from the SSM Conceptual model
16- (1 2 3 4 5)
17- 5- I found it easy to draw a sequence diagram based on each use case.
18- (1 2 3 4 5)
19- 6- I found it easy to draw the Class Diagram based on the sequence diagrams.
20- (1 2 3 4 5)
21- 7- I can see that UML Class Diagram represents the domain model of the investigated system.
22- (1 2 3 4 5)
23- 8- I understand how code can be generated from the domain model (Class diagram).

253

24- 2 3 4 5)

 9- Which UML Diagram you believe is the most important one for business domain

modeling among other UML diagrams, rank them from the highest to the lowest using

(1=Most important, 2=important,3=average,4=less than average, not important). Please

put (√) in the cell you believe it’s suitable.

Diagram/Importance

Degree

5=Most

Important

4=Important 3=Average 2=less than

average

1=not

important

Use Case Diagram

Class Diagram

Activity Diagram

Sequence Diagram

State Chart

Collaboration

Diagram

1- Understanding and practicing linking between SSM and UML:

SSM provided a general understanding and conceptual modelling of the problematic

situation in the business domain. The output generated by SSM will be used to model,

design, and implement the required system. Based on the work you done in the course

which includes moving from SSM Conceptual model to UML Use Case diagram, please

answer the following questions:

1- I found the transition from Conceptual Models to Use Case Models is an easy

process

(1 2 3 4 5)

254

 2- I found that some of the activities in the Conceptual Model did not map directly to

use cases.

(1 2 3 4 5)

 3- I can see that the resultant use cases represent the key activities of the conceptual

model

 (1 2 3 4 5)

 4- I found that the adapted method for transition is easy to use and practice

 (1 2 3 4 5)

 5- I’m confident that I can depend on the resultant use cases to draw other diagrams

like sequence and class diagrams

 (1 2 3 4 5)

 6- I found it’s useful to use SSM at the beginning to investigate the business domain and

to move to UML and implementation

(1 2 3 4 5)

2- Understanding and practicing the Implementation Pattern:

Naked Objects, TrueView, BlueJ or other implementation patterns satisfied the

philosophy of Domain Driven Design recommended to be used for implementation. The

proposed framework will not deal more with the implementation part and will continue the

same as DDD. If you used any of the above mentioned Patterns for implementation, please

answer these questions:

1- I found the implementation pattern is an easy to adapt and use for

implementation(Name of pattern:------------------------------)

(1 2 3 4 5)

2- I found moving from Domain model (class diagram) to code is easy and not complicated

 (1 2 3 4 5)

255

3- I found the implementation pattern easy to represent the domain model processes in

code.

(1 2 3 4 5)

4- The interfaces generated by the implementation pattern are easy to use.

(1 2 3 4 5)

3- Understanding and practicing the integration of SDDD framework components:

Domain Driven Design Approach (Eric Evan, 2004) is an approach adapted to develop this

framework. The developed framework expected to do some improvement in the early stages

of DDD. SSSM added for investigating and modeling the business domain. It is expected to

facilitate the communication between different stakeholders. Based on that new layer added

to DDD (soft layer) represented by SSM. Based on this brief answer the following questions:

1- I found that integrating all the above tools in one development framework helped me to

do the required project Easley

(1 2 3 4 5)

2- I’m confident that this framework can be used to develop a complete software support

system

(1 2 3 4 5)

3- I’m confident that the whole systems components (soft and hard) can be

 investigated, modelled, and implemented using this framework.

 (2 3 4 5)

4-I found that this framework helped me to see an integrated picture of the required

 system in the project

(1 2 3 4 5)

256

Appendix 2

Use cases porformas for PTS (undergraduate)

Table Appendix 2-1: Use Case for Creating/ Adjusting a Peer Tutor

Table Appendix 2-2: Use Case for Creating/ Adjusting a Peer Tutee

Table Appendix 2-3: Use Case for Creating/ Adjusting a Peer Tutoring Session

257

Table Appendix 2- 4: Use Case for Inserting a Tutor Attendance Record

Table Appendix 2-5: Use Case for Calculating Amount Receivable by Tutor

258

Appendix 3

PTS implementation using naked objects

Figure Appendix 3- 1: PTS Implementation Screen Shot

Figure Appendix 3- 2: PTS Implementation Screen Shot

259

Figure Appendix 3- 3: PTS Implementation Screen Shot

260

Appendix 4

Activity diagrams of SAS

Figure Appendix 4-1: Activity Diagram for Management, Association and Students

Figure Appendix 4- 2: Activity Diagram for Student Affairs, Colleges and Transportation

261

 Figure Appendix 4- 3: Activity diagram for the election process

Figure Appendix 4- 4: Activity Diagram for Preparing Activities Schedule

Figure Appendix 4- 5: Activity Diagram for Preparing Candidate Schedule

Figure Appendix 5- 6: Activity Diagram for Preparing Student Application

262

Appendix 5

SAS implementation using naked objects

Figure Appendix 5- 1: Main Menu of SAS Software Screen Shot

Figure Appendix 5- 2: Data Entry Screen Shot

263

Figure Appendix 5- 3: Java Code through Eclipse Screen Shot

 Figure Appendix 5- 4: Drag and Drop Screen Shot

264

Appendix 6

Use case proforma of SLCS (post-graduation)

Table Appendix 6-1: Proforma for Use Case Import Monthly Report

265

Figure Appendix 6- 2: Use Case Diagram Prepared by Din (2009)

266

Table Appendix 7-3: Proforma for Use Case Organize Course Group

267

Table Appendix 7-4: Proforma for Use Case Organize Contacts

268

Appendix 7

Use case Proforma for PTS (post-graduate)

Table Appendix 7-1: Proforma for Use Case Add New / Edit Tutor

269

Table Appendix 8-7: Proforma for Use Case Add New / Edit Tutee

270

Table Appendix 8-7: Proforma for Use Case Update Diary

271

Table Appendix 7-4: Proforma for Add Room

272

Table Appendix 7-5: Proforma for Schedule Session

273

Table Appendix 7-6: Proforma for Marking an Attendance Register

Table Appendix 7-7: Proforma for Calculate Rewards

274

Appendix 8

TrueView implementation for PTS (post-graduate)

Figure Appendix 8- 1: Screen Shot - Tutor’s Availability

275

Figure Appendix 8- 2: List of Tutees needing Support in Programming

276

