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Abstract—Rolling element bearings are the essential 

components of rotating machines, faults of which can cause 

serious failures or even major breakdowns of a machine. 

Fault diagnosis deliveries significant benefits to machines 

with rolling element bearings by finding the faults at early 

period and taking corrective actions to enhance safe and high 

performance operations. However, multiple sensor usages 

and high rate data acquisition involved in a monitoring 

system have considerable drawbacks of high system cost 

involved in purchasing hardware for data transfer, storage 

and processing. To reduce these shortages, this paper 

investigates compressive sensing (CS) techniques for the fault 

detection of rolling element bearings. Based on the frequency 

shift and envelope analysis, a CS scheme is developed for 

monitoring the bearing. The number of data transmitted and 

stored can be reduced by several thousands of times. The 

simulation and the experimental results demonstrate that the 

compressed vibration signals of rolling element bearings are 

effective to detect bearing faults at the total compressing 

ratio up to several thousand with the corresponding 

maximum compression ratio (CR) of CS process at nearly 

100. In addition, several performance measures are applied 

to evaluate the reconstructed signals and show 

approximately the information about the noise level of the 

system. 

Keywords-Rolling element bearings, compressive sensing, 

frequency shift, reconstruction 

I. INTRODUCTION 

The faults of a rolling element bearing cost the 
majority of the maintenance expenditure and can 
inevitably cause serious failures or even damages of a 
rotating machine during operation. Thus, it is extremely 
necessary to monitor the condition of a rotating machine 
and diagnose faults of its rolling bearings. However, 
multiple sensor usages and high rate data collection 
involved in the data acquisition of the monitoring system 
have significant drawbacks of high system cost involved 
in purchasing the hardware for data transfer, storage and 
processing. 

Recently, a new theory called compressive sensing (CS) 
was proposed as a framework by D. Donoho et al., in 

which the sparsity of a signal can be exploited to recover 
it from fewer samples than required by the Shannon-
Nyquist sampling theorem through optimization [1]. It 
innovates the technology through reducing the number of 
data in the signal processing field, especially medical 
imaging, radar imaging, image and video compression. 
Abo-Zahhad et al. [2] made a survey for CS including 
concepts, fundamentals, algorithms, and applications. In 
addition, many researchers has applied CS for the fault 
diagnosis of bearings to solve the aforementioned issue. 
For example, Zhang et al. [3], [4] proposed two methods, 
one according to the results of matching pursuit and the 
other one based on training over-complete dictionaries, 
that bearing condition will be estimated finally using few 
measurements directly without reconstructing the signals. 
C. Wang et al. [5]studied a novel sparse wavelet 
reconstruction residual feature for rolling element bearing 
diagnosis based on building new dictionary matrices. 
Wang et al. [6], [7] extracted different characteristic 
parameters for segments of bearing signals and then 
detected faults based on compressed feature signals. In [8], 
Liu et al. et al. presented an efficient method to detect early 
defects of bearings with extraction the acoustic emission 
compressive features from compressively-sensed data 
directly, which reduced the amount of data required and 
computation. However, due to great computational burden 
of CS, some algorithms only selected a small segment for 
compression so that parts of signal features may be lost. 
Simultaneously, these papers did not mention to reduce the 
sampling frequency because of a large expense of 
instruments with high sampling rate in industrial 
applications. In this paper, CS is utilized to detect faults of 
rolling bearings through compressing vibration signals 
based on the frequency shift, down sampling and envelope 
analysis. In addition, the relationship between the CR and 
average mean squared error (AMSE) is also discussed with 
simulated signals and experimental signals. 

The reset content of this paper is organized as follows. 
Section II introduces the basic theory of CS and then 
develops the fault detection scheme for rolling bearing 
monitoring. Section III depicts the performance of the 
proposed scheme based on simulated signals applied with 
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CS. Section IV presents the experimental verifications 
along with critical discussion. After that, conclusions are 
summed up in the final section. 

II. METHODOLOGY 

A. Basic Theory of Compressive Sensing 

Compressive sensing breaks the traditional Nyquist 
sampling theorem followed by a data acquisition and 
expresses that far fewer samples are required to 
reconstruct the original signals. The original signal x , 

which is sparse and with the length of N , can be 

compressed to a signal y  with a length of M ( M N ) 

by using a random matrix  , which is called 
measurement matrix with the size of M N . Specifically, 

the compressed signal y  is defined as 

 y x    (1) 

Figure 1 shows the schematic diagram of a compressive 
sensing processes. The top row shows the forward 
compressing and the bottom shows that the compressed 
signal y can be also based to reconstruct the original 

signal x . 

 

Figure 1. The compressive sensing schematic diagram[9] 

Obviously, it will save large amounts of resources 
through transferring and storing the signal y, compared 
with that of the signal x, without losing useful information. 
After receiving the signal y in the station, several effective 
algorithms can be applied to reconstruct the compressed 
signal if necessary.  

Most of signals are not sparse in the time domain. 
Usually, it needs to involve basis vectors   to enhance the 
sparsity characteristics embedded in the time domain. 
Therefore, the compression process will be 

 y x     (2) 

which can be represented more intuitively with pixel 
matrixes in Figure 2. 

y Φ Ψ 

 

Figure 2. Matrix representation of signal compression[10] 

As the envelope analysis based on the demodulating 
fault signals in a high frequency resonance is the most 
effective techniques for bearing monitoring, this study will 
focus on applying CS to the envelope extraction process. 
Particularly, the Fourier basis functions will be the   to 

characterise the sparsity of the bearing vibrations and the 
envelope signal will be resampled using (1) to obtain a 
compressed signals that allows the fault to be detected 
reliably. 

B. Measures of Performance 

1) Compression Ratio (CR): Compression ratio (CR) 
for measuring the performance of CS technique is defined 
as the ratio of number of samples in an original signal to 
the number of compressed measurements. Then, CR can 
be calculated as follows 

 =
N

CR
M

 (3) 

where, N is the number of samples in an original signal 
and M is the number of compressed measurements. The 
larger CR value, the smaller account of data needs to be 
stored after compression. 

2) Mean Square Error (MSE): Mean square error 
(MSE), which indicates the difference between the 
reconstructed and the original signals, is defined by 
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where 
iREC  is the thi  element of the reconstructed 

signal and 
iORG  is the thi  element of the original signal 

with length N. The higher MSE means the worse 
performance in signal reconstruction in CS. 

3) Rec-Signal to Noise Ratio (R-SNR): Basically, 
signal to noise ratio is a measure to compare the level of a 
desired signal to the level of background noise. Here, R-
SNR helps to analyse the noise factor in the signal [11]. 
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4) Percent Root Mean Square Difference (PRD): 
Percent root mean square difference (PRD) is mainly used 
to measure the distortion of the reconstructed signal 
compared with the original signal. PRD is given as follows 
[12], 
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C. Fault Detection Strategy by CS 

The bearing vibration signal acquired usually exhibit 
typical modulation characteristics. Specially, the high 



frequency resonance technique (HFRT) treats the 
measured vibration responses as a result of the modulation 
between the periodic impulses and structural resonances. 
To have high signal to noise ratio data for bearing fault 
detection, bearing CM usually acquires vibration data at a 
sampling rate as high as several thousand Hertz in order to 
capture the frequency ranges having the resonances. This 
acquisition results in a large amount data which demands 
high capacity resources for post processing. 

In order to reduce the sampling rate, a frequency 
shifting can be utilized to move the vibration signals from 
a high band such as from 2000Hz to 3000Hz to a lower 
one from 0 to 1000 Hz firstly. The following two equations 

show that the signal will shift left with 
0w  in the frequency 

domain if it is multiplied by 0jw t
e


 in the time domain. 
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  (8) 

After shifting frequency with an exponential function, 
the vibration signal is resampled based on the bandwidth. 
Then, envelope the resampled signal to obtain the main 
information through the signal contour. After that, the 
signal vector is compressed with a Gaussian random 
matrix and a discrete Fourier transform (DFT) matrix to 

get a compressed signal with length  M M N . At last, 

representing the compressed vibration signal with   

through orthogonal matching pursuit (OMP). Hence, the 
faults can be determined by the signal  . In addition, the 

envelope signal in time domain can be reconstructed with 
the main information and the distortion of the signal can 
be evaluated with the measures of performance depicted in 
the second section. The flow char of this proposed bearing 
fault detection strategy with CS is displayed in Figure 3. 

In the simulation and application cases, shift the high-
frequency band (2,000Hz to 3,000Hz) to the low-

frequency band with exponential function 02j f t
e

 (where 

0 2000Hzf  ). Then, resample the vibration signal from 

the original sampling frequency 96,000 Hz to 3,000 Hz. 

The length M  of compressed signal y , which is 

determined by CR, will be discussed separately according 
to the following actual situation. Due to the randomness of 
the measurement matrix, the process of CS will be 
repeated 100 times and acquire the average result to 
determine the bearing faults. 

 

Original signal x with length N

Envelope

Compress the envelope signals to get 

compressed signal y with length M (M<<N)

OMP based on y to obtain the sparse 

representation η of y

Determine faults by η 

Frequency shift with exponential function

Resample based on the bandwidth 

Band-pass filter

Reconstruct the envelope signal and 

evaluate reconstruction performance  
 

Figure 3. Flow chart of the proposed fault detection strategy with CS 

III. SIMULATION STUDY 

To verify the proposed scheme, a noise-free vibration 
signal was firstly simulated based on the parameters 
TABLE I. Then it was added with different levels of 
Gaussian noise signals which results in a number of cases 
with different SNRs (from 0dB to -12dB), allowing the 
detection performance to be evaluated more realistic noise 
contaminations. Figure 4 shows an example of a simulated 
signal with noise at SNR of -10dB in the time domain. 
Compared with noise free case, the noisy signal show little 
information regarding to the periodic impulses of a typical 
local defect on the races or element of a bearing 
components. In the frequency domain, there are 
observable peaks in the resonance range around 2,500Hz, 
showing typical modulations between the fault 
components and the resonance.  

TABLE I.  SIMULATION PARAMETERS 

Parameters Value (Hz) 

Sampling Rate, Fs  25,600 

Natural Freuency, rsf  2500 

Fault Frequency, ff  89.05 

 



 

Figure 4. Simulated bearing signal in time and frequency domains 

By applying band-pass filtration, frequency shift, 
down sampling, envelope extraction, the CS was carried 
out to evaluate if the fault is detectable i.e. with at least 
that the first two harmonics are observable in the envelope 
spectrum. At the same time, the relationship among the 
SNR, CR and various measures based on fault detection 
are analysed to investigate the performance of 
reconstruction in CS. 

The sparse representation of the signal with noise at 
SNR of -10dB, which was demonstrated in Figure 4, is 
displayed in Figure 5. It can be seen that the first three 
harmonics are presented significantly in the envelope 
spectrum, confirming the occurrence of the outer race fault 
on the bearing without doubt. 

 

Figure 5. Sparse representation of a signal and its reconstruction after 
CS (SNR= -10dB CR=16) 

 

 

Figure 6. Performance measures with different CR 

Figure 6 depicts the relationship among the 
performance measures and CR under different SNR cases. 
For the purpose of exploring the effect of SNR on CR, a 
rule of appearance of second harmonic is set up. 
According to this rule, the smaller the value of SNR is, the 
smaller the maximum compression ratio achieved. On the 
other side, the performance measures R-SNR and PRD 
have an excellent positive correlation with CR. 

 
Figure 7. Comparison of performance measures for different SNR 

For further comparison of performance measures for 
different SNR cases, Figure 7 demonstrates the MSE, R-
SNR and PRD with the change of CR at different SNR. 
MSE values increase with CR under low SNR (0dB and -
5dB). Conversely, they decrease with the increase of CR 
under the lower SNR (-10dB and -12dB). However, MSE 
can only be used for comparison of the same signal at 
different CRs instead of different signals. To solve this 
problem, we use R-SNR and PRD measures to evaluate the 
performance of CS reconstruction. Both these two 
measures indicate that the level of the noise can affect 
significantly the reconstruction result of the compressed 
signal. It is clear that R-SNR and PRD always have a 
converse trend, so that only PRD will be used for 
performance evaluation in the next section. 



IV. EXPERIMENTAL RESULTS 

A. Test System 

Figure 8 shows the schematic diagram of the test 
system, which consists mainly of a DC generator, a motor, 
a data acquisition device, bearings, accelerometers. During 
the faulty bearing test, the vibration response was acquired 
at a sampling rate of 96kHz in order to capture any 
potential structure resonances of the bearing systems. 

PC
DAQ

Vibration Sensors 

Motor Device and DC Generator  

 

Figure 8. Schematic diagram of the test system 

In this experiment, key specifications of the roller 
bearings used are shown in TABLE II, and the outer race 
fault created artificially is shown in Figure 9. 

TABLE II.  SPECIFICATIONS OF BEARINGS 

Elements Values 

Pitch Diameter, 
cD  46.4 mm 

Roller Diameter, 
bD  9.53 mm 

Shaft Rotating Frequency, 
rf  24.90 Hz 

Roller Number, 
rN  9 

Contact Angle,   0 

 

Figure 9. Bearing with outer race fault 

The theoretical outer race fault frequency of  can be 

calculated through (9). 

 1 cos
2

br

o r

c

DN
f f

D


 
  

 
  (9) 

According to (9), the outer race fault frequency is 
about 88.86Hz when the test rig operated at the rated speed 
of 24.90 Hz, which is the particularly frequency to be 
identified for fault detection. 

B. Analysis and Results 

In this experiment, the length N of the original signal 
is 96k. The length of data changed to be only 3000 after 
frequency shift and down sampling. The next step is CS 
which will further compress the envelope signal acquired 
after down sampling. Figure 10 demonstrates two 

examples of envelope and reconstructed signals at CR=32 
and 96. 

 

Figure 10. Examples of envelope and reconstructed signals at CR=32 
and 96 

The frequency information in Figure 10 denotes the 
first two harmonics are included in the sparse 
representation, which is useful to determine the fault type. 
TABLE III gives values of two evaluation indicators for 
these two CRs. The CRs state that the compressed signal 
only retains about 90 and 30 data points for CR=32 and 
CR=96, separately. It is observed that reconstructed 
signals maintains most of the useful information after CS 
referred the reconstruction in Figure 10. As a result, the 
proposed approach compresses the original signal up to 
thousands of times and the fault can be detected by the 
sparse representation of the compressed signal. 

TABLE III.  VALUES OF MEASURES FOR FIGURE 10 

Parameters Values 

CR 32 96 

MSE 0.0761 0.0910 

PRD(%) 27.28 48.34 

 

Figure 11 presents the MSE and PRD trended with 
different CR for the faulty bearing. As aforementioned in 
section III, the values of MSE increases with the rise of 
CR and PRD. This result shows that the noise in this signal 
is relatively smaller, compared with the high noise cases 
simulated. Alternatively, it may also mean that the fault 
severity is large. 

 



 

Figure 11. Performance measures for the bearing with outer race fault 

V. CONCLUSION 

This paper proposes a fault detection scheme based on 
CS through the frequency shift and the envelope extraction 
to overcome the problems of large quantity of data 
transmission and storage in monitoring systems with 
modulation signals, especially rolling element bearings. 
Both simulation and experimental results show that the 
outer race fault can be reliably detected with a small 
amount of data points. Additionally, the maximum CR can 
reach to almost 100, so that the outer race fault can be 
detected accurately at the total compressing ratio up to 
thousands, and the compressed signal can be reconstructed 
with the performance measures evaluated. Moreover, it 
has demonstrated that the vibration signals acquired based 
on conventional methods can be resampled into 
compressed signals with a much smaller number of 
samples for the purpose of bearing condition monitoring. 
For further application, according to the theoretical 
analysis, it also can be used for other systems with 
modulation signals to reduce the resources consumed by 
data transmission and storage. 
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