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Implications for practice  

 

Chemotherapy-induced alopecia (CIA) represents perhaps the most distressing side effect of 

chemotherapeutic agents and is of huge concern to the majority of patients. Scalp cooling is 

currently the only safe option to combat CIA. Clinical and biological evidence suggests 

improvements can be made, including efficacy in delivering adequately-low temperature to the 

scalp and patient-specific cap design. The increased use of scalp cooling, an understanding 

of how to deliver it most effectively and biological evidence-based approaches to improve its 

efficacy have enormous potential to ease the psychological burden of CIA, as this could lead 

to improvements in treatment and patient quality-of-life.   
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Abstract  

 

Chemotherapy-induced alopecia (CIA) is the most visibly distressing side effect of commonly 

administered chemotherapeutic agents. As psychological health has huge relevance on 

lifestyle, diet and self-esteem, it is important for clinicians to fully appreciate the psychological 

burden that CIA can place on patients. Here, for the first time, we provide a comprehensive 

review encompassing the molecular characteristics of the human hair follicle (HF), how 

different anticancer agents damage the HF to cause CIA, subsequent HF pathophysiology 

and we assess known and emerging prevention modalities that have aimed to reduce or 

prevent CIA. We argue that, at present, scalp cooling is the only safe and FDA-cleared 

modality available, and we highlight the extensive available clinical and experimental 

(biological) evidence for its efficacy. The likelihood of a patient that uses scalp cooling during 

chemotherapy maintaining enough hair to not require a wig is approximately 50%. This is 

despite different types of chemotherapy regimens, patient-specific differences and possible 

lack of staff experience in effectively delivering scalp cooling. The increased use of scalp 

cooling and an understanding of how to deliver it most effectively to patients has enormous 

potential to ease the psychological burden of CIA, until other, more efficacious, equally safe 

treatments become available.  

 

 

Keywords  

Chemotherapy-induced alopecia, hair loss, chemotherapy, scalp cooling, side effects, toxicity, 

hair follicle, cell models, prevention, safety.   
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1. Introduction to chemotherapy-induced alopecia (CIA) 

CIA is an acquired form of hair loss that affects patient quality of life, negatively impacts body 

image, sexuality and self-esteem, and provides a strong indication of the individual’s health 

status, with most people associating it with cancer [1, 2]. Increasing use of poly-therapies, 

high-dose taxane administration and an associated increase in cases of permanent CIA are 

being reported.  Though a non-life-threatening condition, CIA is of huge concern to most 

patients, yet is often viewed as being of minor clinical importance, when the focus is 

understandably on the treatment of a potentially fatal malignancy. Equally, whilst considerable 

efforts have been expended in the attempt to ameliorate other side-effects of chemotherapy, 

the pathobiology of CIA has been heavily overlooked [3].  

CIA is often a particular burden for those with young children who report this as the most 

traumatizing aspect of treatment, as the child becomes emotionally confused and concerned 

[4]. Consequently, CIA can be one of the most emotionally difficult side-effects, with feedback 

from female patients showing that losing hair is/would be more difficult to live with than the 

loss of a breast [5]. Social media and the increased pressure on appearance means patients 

are likely to feel losing their hair is detrimental to their self-esteem, whilst dealing with a 

possibly life-threatening disease. These factors could negatively impact on therapeutic 

outcome, as severe stress and depression [2] is linked to a weakened immune system, an 

instrumental factor in cancer prognosis [6]. Although most of the research on the emotional 

effects of CIA has been conducted on females, the available research indicates that, at least 

for younger males, the impact of CIA is the same as that experienced by females [7]. CIA on 

females portrays that they have cancer, as most women maintain their hair throughout life. 

Men commonly undergo androgenic alopecia, however most young males do not, thus males 

may also be stigmatised as cancer sufferers when CIA occurs.  

It is important for clinicians and even patients to fully-appreciate the possible psychological 

burden of this side-effect and to have a clear understanding of ways available to prevent it [8]. 

To this end, here we provide an overview of basic human hair follicle (HF) biology, with a focus 

on those events most relevant to CIA and the processes that occur during hair loss. This 

includes a description of the known mechanisms by which anticancer agents cause CIA. We 

discuss the various preventative strategies that have been investigated both in the lab and the 

clinic, whilst ultimately focussing on the most effective therapy currently available, scalp 

cooling.  
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2. The hair follicle (HF)  

2.1. Structure and function 

Hair is a skin appendage with diverse functions that is important for thermoregulation, 

protection from solar radiation and sexual dimorphism [9]. In humans, scalp and facial hair is 

associated with general wellbeing, strong social status, sexual attraction, fashion statement 

or even to demonstrate political affiliations [10, 11].  

The HF is a mini-organ and skin appendage, its primary function is to produce the visible hair 

shaft [12, 13]. The HF is divided into distinct sections, as detailed in Figure 1. The upper 

sections of the HF are permanent, with the infundibulum running from the opening of the 

sebaceous gland (SG) duct to the point where the HF meets the epidermis, providing a funnel-

shaped cavity through the epidermis and offering an opening for the hair shaft. The isthmus is 

located at the lower boundary of the SG at the insertion point for the arrector pili muscle. This 

region is also commonly described as the bulge, and contains a population of epithelial HF 

stem cells (eHFSCs), the identity of which has recently been reviewed [14]. The progeny of 

these stem cells produce the hair bulb matrix keratinocytes which can contribute to formation 

of the epidermis particularly during wound-healing, and it is damage to these cells that 

severely impairs long-term hair shaft production [15]. The suprabulbar region contains multiple 

layers of the outer root sheath (ORS) and inner root sheath (IRS), which form concentric 

cylinders wrapping the hair shaft itself (Figure 1). Each of these layers has a unique expression 

of structural and adhesion proteins [16]. The hair bulb contains the matrix keratinocytes, a 

population of rapidly-dividing progenitor cells that differentiate (specialise) to form the IRS and 

hair shaft. Matrix cells in the lower part of the hair bulb have a higher mitotic (proliferation) rate 

than those of the upper part and migrate upwards whilst differentiating [15]. The bulb also 

contains the HF pigmentary unit (HFPU), within which are found the melanocytes responsible 

for hair colour. 

The HF is primarily epithelial in origin, with the exception of the dermal papilla (DP) and 

connective tissue sheath (CTS), which are mesenchymal. Inductive signals for HF growth and 

cycling originate from the DP, an oval mass of specialised fibroblasts embedded in an 

extracellular matrix with extensive vascularisation [12, 17, 18]. There is a close relationship 

between the size of the DP and HF, with a larger DP creating a larger HF capable of generating 

a thicker hair shaft [19]. The CTS surrounds the HF, separating it from the rest of the dermis, 

and contains nerve endings, vasculature and immune cells (such as mast cells). 
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2.2. The hair cycle 

HF morphogenesis (original/new HF development) occurs antenatally, with the HF beginning 

a post-natal, life-long cycle through three distinct phases. Following morphogenesis, this hair 

cycle begins with a regression phase (catagen), followed by a period of relative quiescence 

(telogen) and finally a long growth phase (anagen). The hair cycle is summarised in Figure 2 

and described in more detail below. 

2.2.1. Catagen  

During the regressive catagen phase, extensive cell death (apoptosis) occurs in the hair matrix 

keratinocytes, IRS and ORS, greatly reducing the HF volume, with the remnants of the ORS 

forming the epithelial strand [9]. Structurally, an apoptotic cell undergoes DNA condensation 

and fragmentation, cytoplasmic condensation, membrane blebbing and formation of apoptotic 

bodies and is removed in a controlled manner by immunocytes [20]. Apoptosis is crucial in 

long-term regulation of tissue maintenance, which particularly applies to the HF and its 

cycling/regeneration; yet exogenous agents can inadvertently induce excessive apoptosis. 

Many factors can stimulate apoptosis in the HF, including UV radiation, X-rays, extreme 

temperature, pathogenic toxins, lytic viruses, toxic chemicals and chemotherapeutic drugs 

[21]. This stimulation of apoptosis can ultimately drive the HF into the regressive catagen 

phase which stops hair production. 

Growth factor-mediated signalling between epithelial and mesenchymal cells orchestrates the 

creation of the connective tissue that comprises a developing HF and involves diverse 

signalling pathways, including Wnt, TGF-/BMP, Hedgehog, epidermal growth factor (EGF), 

fibroblast growth factor (FGF) and Notch [22, 23] as well as TNF-related signalling events [24, 

25]. Catagen-associated apoptosis primarily occurs in the hair matrix keratinocytes, the 

proximal and central ORS but generally not in the dermal papilla, which expresses high levels 

of anti-apoptotic Bcl-2 [21]. The compartmentalised expression of pro- and anti-apoptotic 

factors in the HF is shown in Figure 3. A diverse array of additional molecules have been found 

to play a role in catagen induction, including FGF-5 [26, 27],  IFN-γ [28], substance P [29] and 

oestrogens [30]. The apoptotic processes within the HF are also controlled by caspases -1, -

3, -4, and -7 [21, 31, 32] and can also be triggered by the withdrawal of DP-derived growth 

factors or by apoptotic signals produced by mast cells located within the CTS [29, 33, 34].  

In addition to apoptosis, other events occur during catagen. In particular, the termination of 

melanogenesis is one of the earliest events and results in the hair shaft becoming less 

pigmented. The DP becomes condensed and ball-shaped, detaching from the surrounding 

matrix keratinocytes [35]. The old hair shaft forms the club hair, which comes to reside entirely 
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in the dermis. Overall, catagen lasts for 7-14 days, with ~2% of scalp HFs estimated to be in 

catagen at any one time [15]. 

2.2.2. Telogen 

Although traditionally described as a quiescent or resting phase of the hair cycle [16], recent 

evidence has shown that the HF is highly metabolically and transcriptionally active during 

telogen [36]. Telogen is referred to as either ‘refractory’ or ‘competent’ [37]. In the first state, 

high levels of DP-derived BMPs, FGF18 and Wnt antagonists prevent any response to 

anagen-inducing signals. As the levels of these molecules fall, the telogen HF becomes 

primed to enter anagen, which is described as competent telogen. During telogen, the DP is 

in close contact with the HF bulge (stem cell region), separated by a shortened epithelial 

strand known as the secondary hair germ [9]. An estimated 10-15% of HFs are in the telogen 

phase, which lasts approximately 3-4 months [15, 38].  

2.2.3. Anagen 

With stimulation of a new anagen phase, the more distal cycling portions of the HF are 

gradually renewed, the hair bulb ultimately reaches the dermal adipose layer and 

melanogenesis is at its highest level [35]. HFs remain in anagen for approximately 2-6 years 

[16], with ~80-85% of scalp HFs in this phase at any given time [15]. 

3. Chemotherapy drugs and CIA   

3.1. Anticancer chemotherapy agents and their action    

Since the FDA approved mechlorethamine in 1949 for the treatment of non-small cell lung 

cancer, >100 chemotherapy agents have been approved for cancer treatment in the US alone 

[39]. In contrast to surgery and radiotherapy which target the primary tumour, chemotherapy 

is a systemic treatment and as such it targets both primary and metastasised tumour cells 

[40]. The principle behind infusing chemotherapeutic drugs is that because a greater number 

of malignant cells are in the cell cycle (are dividing) at any given time compared with healthy 

cells, the drug should have a greater impact on malignant cells (by stimulating higher levels of 

apoptosis). Table 1 provides a list of the main categories of commonly-used anticancer 

compounds as well as their point of action in the mammalian cell cycle. Chemotherapy agents 

are routinely administered intravenously but some may be oral or even topical, with their 

distribution depending on a number of factors, such as blood flow, drug diffusion, protein 

binding, tissue penetration and lipid solubility. Generally, drugs with extensive tissue 

penetration or high lipid solubility will tend to exhibit prolonged elimination phases due to 

slower tissue release [41].  
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Most agents are administered close to the maximum tolerated dose (MTD) which is quantified 

relatively to the individual’s body surface area; this normalises the dosage accounting for 

physiological factors such as cardiac output, body fat and size and is expressed as units of 

mg/m2 [41]. The frequency and intervals between treatments depend on the cancer type and 

the treatment regime and thus are quite variable. Clinical evidence demonstrates that most 

cancers are unlikely to be managed with a single chemotherapy agent and that combinations 

are more efficient in disease eradication [42]. The advantages of combinations are believed 

to be that: i) they provide maximal malignant cell death within the range of tolerated toxicity, 

ii) malignant cells in different phases of the cell cycle are targeted (discussed below), and iii) 

there is a reduced risk of malignant cell drug resistance development [43]. Chemotherapy is 

administered in cycles that include rest periods, so that the body has a chance to recover from 

side-effects (outlined below). 

 

3.2. Cellular and molecular effects of chemotherapy drugs   

Cells such as HF matrix keratinocytes, intestinal epithelial cells and bone marrow cells also 

divide rapidly, and thus chemotherapy drugs cause side-effects in healthy tissues. Bone 

marrow toxicity causes neutropenia, thrombocytopenia and anaemia, damage to the digestive 

tract results in mucositis, nausea, vomiting and diarrhoea. Induction of apoptosis in 

keratinocytes can cause nail bed damage, changes in skin integrity and CIA [40].  

Although constant division/cell cycling is one reason why chemotherapy affects cancer cells 

more than normal cells, cancer cells are also more susceptible to lethal oxidation/reactive 

oxygen species (ROS). Due to their excessive metabolic rates and abnormally high energy 

demands, cancer cells operate under conditions of high ROS levels, a state also referred to 

as oxidative stress; this may in fact represent their ‘Achilles heel’, as agents that enhance 

ROS production can selectively trigger more cancer cell death [44]. Many anticancer drugs 

can increase ROS levels in cancer cells (examples provided below), thus causing them to 

cross a ‘lethal pro-apoptotic threshold’. A range of chemotherapeutic drugs have been shown 

to induce ROS via various mechanisms, such as phosphorylation of NADPH oxidase (Nox) 

family members and by directly impacting on the mitochondria, the main site of production of 

ROS in cells [45].  

Agents shown to augment ROS production to apoptotic levels include anthracyclines (e.g. 

doxorubicin, epirubicin), alkylating agents (e.g. cyclophosphamide), and platinum-based drugs 

(e.g. cisplatin, carboplatin and oxaliplatin) [46]. Interestingly, it is such agents that induce HF 

apoptosis at a greater frequency/severity than most other drugs, suggesting a possible 
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relationship between ROS production and stimulation of HF catagen [47]. Indeed, the high 

mitotic and melanogenic activity in the hair bulb ensures a high basal level of ROS within this 

compartment. Whilst the HF is well-equipped to deal with high levels of reactive moieties, it 

has recently been shown that exogenous sources of ROS will result in hair matrix apoptosis, 

lipid peroxidation and induction of catagen [48]. Moreover, it has been suggested that oxidative 

damage of mitochondrial DNA [49] and inhibition of endothelial proliferation in the vascular 

network surrounding the HF can contribute to CIA [50].  

 

3.3. Chemotherapy-induced HF pathophysiology   

The HF is particularly sensitive to chemotherapy induced apoptosis, as >80% of scalp HFs 

are anagen-phased at any one time [51]. Strikingly, the division rate displayed by HF matrix 

keratinocytes during anagen can be greater than that of malignant cells [11], thus resulting in 

susceptibility to chemotherapy agents. High levels of perfusion around the hair bulb by the DP 

may also make this region of the HF more susceptible to drug-damage.   

The severity of CIA depends on the chemotherapy drug, its dose, administration route and 

treatment schedule. A list of drugs likely to cause CIA and relative severity is provided in Table 

1. High intravenous doses usually cause more rapid and extensive hair loss, whereas oral 

therapy (despite administration at a higher total dosage) is likely to cause less alopecia [52]. 

CIA extent can be classified using a WHO classification system as: ‘grade 0’ implying no CIA, 

‘grade 1’ minor, ‘grade 2’ moderate with wig proposal, ‘grade 3’ severe but reversible with wig 

proposal, and ‘grade 4’ complete irreversible CIA with wig proposal [53], although other 

scores/scales are available such as Dean’s scale [54]. The estimated incidence of CIA is >60% 

for alkylating agents, >80% for anti-microtubular agents, 60-100% for topoisomerase inhibitors 

and 10-50% for antimetabolites [55]. Although even just a single drug treatment can 

significantly reduce hair density [56], poly-therapies (consisting of two or more drugs) produce 

higher incidence and more severe CIA compared to single administrations [53].  

In most cases, HF stem cells appear to be largely unaffected by chemotherapy agents, as hair 

regenerates 3-6 months post-treatment [51, 57]. Although, permanent CIA or incomplete 

regrowth is rare, an increasing number of cases are being reported, and this is more common 

in children, thus suggesting that acute damage to HF stem cells may occur [58-60]. In the case 

of children, permanent diffuse alopecia has been associated with haematopoietic stem cell 

transplantation [61]. In permanent CIA there is a large decrease in the total number of HFs, 

but this is not associated with inflammation or fibrosis/scarring [62]. In a study of permanent 

alopecia, biopsies of the frontal scalp were assessed and showed a reduction in anagen-
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phase terminal HFs [63]. Instead, permanent alopecia may be associated with an increase in 

miniaturised vellus hair [63].  

 

3.3 Experimental models for the study of CIA   

As CIA remains an important unmet clinical challenge and since scalp biopsies from patients 

are difficult to access, there is a clear need to develop robust experimental models to both 

understand its pathophysiology and to generate avenues for the development of new 

treatment strategies [11]. Currently available models for studying and understanding CIA 

together with their advantages and disadvantages are outlined in Table 2. These include 

animal models (mainly involving the use of new-born rodents), as well as in vitro models.  

 

4. Prevention modalities against CIA 

4.1. Pharmacological and biological interventions  

Since the 1970s, there have been numerous attempts to prevent CIA by means of mechanical, 

physical and pharmacological interventions [64-69]. Moreover, several classes of biological 

and mainly pharmacological agents with different mechanisms of action have been evaluated 

in animal models of CIA as discussed below.  

4.1.1 Drug-specific antibodies  

To reduce the severity of doxorubicin-induced alopecia in the new-born rat model, the use of 

a monoclonal antibody (MAD11) incorporated in liposomes has been explored to neutralise 

doxorubicin activity. Topical administration of these anti-anthracyclines prevented 

doxorubicin-induced CIA [70]. Further work explored the antibodies ability to prevent the bone 

marrow [71], gastrointestinal [72] and mucosal [73] toxicity of doxorubicin with positive 

outcomes in rats, however no clinical trials to assess this approach for CIA prevention have 

been reported.   

4.1.2 Vasoconstrictors  

As changes in DP blood-flow inevitably correlate with the diffusion gradient of drug delivered 

to the HF, superficial application of topical vasoconstrictors epinephrine or norepinephrine for 

prevention of CIA was studied in female Sprague-Dawley (albino) adult rats treated with 

Cytoxan or 1-methyl-1-nitroso-urea (MNU). Vasoconstriction proved highly effective with MNU 

which has a shorter half-life than Cytoxan, demonstrating the effectiveness of preventing drug 
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entry to the HF. The effect of lack of blood flow to the human scalp, patient response variability 

and other possible contraindications are yet to be clinically resolved and there is no evidence, 

as yet, that this would be advantageous over other approaches (e.g. scalp cooling), however 

if effective it could be better tolerated [65].  

4.1.3 ROS inhibitors/antioxidants 

The antioxidant N-acetyl cysteine (NAC), when applied topically in liposomes, protected new-

born rats against cyclophosphamide-induced CIA, suggesting that cyclophosphamide 

stimulates ROS to drive HF apoptosis in matrix keratinocytes [74]. Furthermore, topical 

application of antioxidants resveratrol or aminothiol PrC-210 reduced CIA in new-born mice 

treated with Cytoxan [65]. Clinical trials utilising antioxidants for prevention of CIA have not 

yet been performed.  

4.1.3 Hair growth cycle modifiers 

Immunosuppressive immunophilin ligands, such as cyclosporine A (CSA), are used in the 

treatment of autoimmune disease and post-organ transplantation, however these drugs also 

prolong anagen and inhibit the catagen entry of the hair cycle, resulting in enhanced hair 

growth in several normal and pathogenic alopecia conditions [75, 76]. Neonatal rats and mice 

have been used to investigate the effects of CSA on CIA. Topical CSA application locally-

protected from alopecia induced by cyclophosphamide, cytosine arabinoside and etoposide 

[77]. Another immunomodulator, AS101, has been shown to reduce the severity of alopecia 

in patients treated with a combination of carboplatin and etoposide [68]. Given the strong 

immunosuppressive nature of CSA, it cannot be developed as an effective CIA treatment, yet 

enhanced understanding of its mechanism of action may yield information that could lead to 

development of novel therapies. 

Topical minoxidil is used for the treatment of male pattern baldness (androgenetic alopecia); 

minoxidil modifies hair cycle dynamics by shortening the telogen phase, thus facilitating 

anagen and encouraging hair growth [78]. In the new-born rat model, local application of 

minoxidil protected against CIA induced by arabinosyl-cytosine, but showed no protection to 

doxorubicin and cyclophosphamide-induced CIA [79]. In a clinical study in breast cancer 

patients, minoxidil was shown to accelerate recovery from CIA, but did not prevent the initial 

hair loss [78]. Minoxidil appears to be most beneficial for men suffering with androgenetic 

alopecia, where it accelerates hair-regrowth [80]. Overall, it helps re-growth following CIA, but 

currently there is no evidence supporting its use in CIA prevention [64]. 
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4.1.4 Cytokines and growth factors  

Interleukin 1 (IL-1), which plays a role in the regulation of inflammatory and immune responses 

to infections, and imuvert, a biological response modifier with immune stimulatory properties 

derived from the bacterium S. marcescens, have both been reported to protect new-born rats 

from CIA induced by cell cycle-specific agents, namely cytosine arabinoside and doxorubicin, 

but not from cell cycle-nonspecific agents such as cyclophosphamide [81]. Both imuvert and 

IL-1 induce the release of multiple cytokines or growth factors and it was suggested that the 

action of imuvert is via IL-1 [82]. There is also evidence that acidic fibroblast growth factor 

(aFGF) and EGF protect from CIA but again only if CIA is caused by cell cycle specific agents 

[81]. Despite the promise of these agents in new-born rat experimentation models, they have 

not yet been tested in the clinic for CIA prevention.  

4.1.5 Cell cycle or proliferation modifiers  

As discussed above, rapid cell proliferation in HF matrix keratinocytes during anagen and lack 

of selectivity in anticancer agents is a primary factor in the pathogenesis of CIA. Hence, one 

approach to protect against the CIA is to inhibit HF cellular proliferation in order to decrease 

sensitivity to chemotherapy [83]. An example of this ‘protective pre-conditioning’ approach is 

the administration of calcitriol (1,25-dihydroxyvitamin D3) which has multiple effects on 

keratinocytes, including stimulation of cell differentiation, inhibition of DNA synthesis and 

G0/G1 cell cycle arrest [84, 85]. Therefore, it is possible that calcitriol, by stimulating terminal 

keratinocyte differentiation, may alter cell susceptibility to apoptosis. Calcitriol can protect 

new-born rats from CIA induced by cyclophosphamide, etoposide and combination of 

cyclophosphamide and doxorubicin [86]. In addition in the adult mouse model, calcitriol could 

enhance normal pigmented hair shaft regrowth and reduce apoptosis in the hair bulb, however 

failed to prevent or retard hair loss after administration of cyclophosphamide [87, 88]. A phase 

I study showed that calcitriol was well-tolerated and 21-subjects showed improved hair 

retention when treated with taxane therapy [64] but its beneficial effects are most likely limited 

to taxanes due to the previously mentioned mechanisms of action for calcitriol.  

Finally, inhibitors of cyclin-dependent kinase 2 (CDK2), which plays a key role in the transition 

from G1 to late G2 of the cell cycle, can block progression from late G1 phase into S phase, 

reduce the sensitivity of HFs to chemotherapy agents and inhibit apoptosis induced by 

etoposide, 5-fluorouracil, taxol, cisplatin and doxorubicin. In new-born rats, topical application 

of a CDK2 inhibitor reduced etoposide mediated hair loss by 50% at the site of application and 

by 33% in CIA induced by combination of doxorubicin and cyclophosphamide [83]. Despite 

the promise of these findings, such modifiers have not been clinically tested yet.  
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4.1.6 Inhibitors of apoptosis 

Caspase-3 is a key mediator of apoptosis and pathways leading to its activation can be 

stimulated by a number of chemotherapy agents [89]. Tsuda et al showed that a topical 

administration of M50054, an inhibitor of caspase-3 reduced CIA induced by etoposide in the 

new-born rat model [90]. Further experiments have not elucidated whether this would protect 

against other drugs and no clinical trials have been reported. 

4.1.7 Parathyroid Hormones 

Parathyroid hormone receptor (PPR) ligands have been shown to have a potential role in the 

hair cycle by inducing hair regrowth following CIA [91]. The best results have been obtained 

using cyclophosphamide in mice where it was found that CIA could be reduced, hair re-growth 

improved and re-pigmentation promoted. This suggests that PPR ligands can be potentially 

useful as a topical application for preventing/treating CIA, however this may rely on follicles 

that have not undergone permanent alopecia [92]. Despite initial promise, clinical trial results 

were disappointing and the first trial was terminated [92]. Understanding the potential issues 

with pharmacokinetics has led to improved PPR ligands, however there is no information 

available on the clinical success of these agents to date.   

 

4.2 Physical interventions/non-drug therapies 

4.2.1 Scalp tourniquets 

Scalp tourniquets are special bands that tightly fit the scalp region to occlude the superficial 

blood flow and thus reduce the amount of drug delivered to the HFs [93]. Scalp tourniquets 

are applied when the plasma drug levels are at their peak, i.e. from the last 10 minutes of 

infusion to 10-minutes after the cessation of drug administration [94]. Tourniquets have 

achieved a small to moderate degree of rescue from CIA induced by vincristine, 

cyclophosphamide and doxorubicin. However, it is no longer recommended due to the high 

pressure applied causing patient discomfort [85, 94]. 

4.2.2 Scalp cooling 

Scalp cooling was introduced in the 1970s [67], with application of cooling throughout the 

administration of chemotherapy in most cases reducing CIA in patients [95].   

A number of hypotheses have been proposed to explain how scalp cooling reduces CIA. 

Firstly, cooling causes rapid vasoconstriction, which has been shown to significantly reduce 

blood flow in the scalp. In fact, perfusion can be reduced to 20-40% of normal levels [96] and 
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this should result in reduced chemotherapeutic drug perfusion through the vasculature of the 

DP [97]. A second hypothesis is that, the rate of drug diffusion across a plasma membrane is 

reduced at low temperatures due to lower kinetic energy, whilst membrane lipid fluidity is also 

lower which will impact on passive diffusion; together these would result in a low proportion of 

drugs entering HF cells [98]. Thirdly, as cell division is an energy-dependent metabolic 

process, it is likely that cooling abrogates enzyme-dependent reactions. It has been reported 

that temperature can particularly affect the G1 and S phases of the cell cycle [99] and this 

could be especially important for drugs that target specific phases of the cell cycle, such as 

mitosis-targeting microtubule-destructive drugs. Fourthly, some drugs (e.g. doxorubicin) may 

enter cells via active transport mechanisms and this would be reduced by cooling. In support 

of this hypothesis, it has been shown in cell models that doxorubicin-induced damage to DNA 

is reduced at lower temperatures [100]. Fifthly, a general decrease in the metabolic activity of 

the cells in the HF could cause a reduction in the cytotoxicity of chemotherapy drugs as a 

range of cellular processes (such as oxidation) decelerate [97]. In practice, it is likely that a 

combination of these mechanisms play a role in reducing CIA upon cooling and this may 

explain the reported efficacy of scalp cooling.  

It has been reported that the scalp temperature achieved by cooling is a critical factor in 

preventing CIA, and dampening the scalp with water improves heat transfer from the head to 

the cooling source [101]. It has previously been reported that a subcutaneous temperature of 

22ºC was a ‘threshold’ temperature necessary for effective cooling, whilst a close relationship 

exists between epicutaneous and subcutaneous temperatures during cooling, with 22ºC 

subcutaneous corresponding to an epicutaneous temperature of 19ºC [97]. Interestingly, 

Komen et al (2016) found that breast cancer patients whose scalp temperature was reduced 

to 18ºC were the least likely to require a wig following anthracycline treatment; the study also 

raised the important issue of device fitting, to ensure that all areas of the scalp are cooled 

effectively, so that adequately low temperatures are achieved [56].  

Interestingly, recent laboratory studies have provided support for these clinical observations. 

It was shown, using a range of in vitro models, that cooling can efficiently protect human 

keratinocytes from chemotherapy drug-induced toxicity [102]. Equally importantly, it was 

shown that the cooling conditions (temperature) used were also a critical factor in preventing 

cytotoxicity. These experiments provided for the first time biological evidence that progressive 

reduction of temperature (26, 22, 18 and 14°C) positively correlated with better protection 

(rescue) of keratinocytes from drug-induced cell death [102]. It is possible that cooling may 

have direct cytoprotective effects and at the same time may reduce drug diffusion that renders 

cells less susceptible to drug toxicity. This is supported by the finding that reducing the scalp 

temperature below 22ºC does not further decrease blood flow [96], thus any increased 
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protection by cooler scalp temperatures may not be a result of reduced scalp perfusion. 

Interestingly, this ‘cut off’ point in the protective effect of cooling has been shown to occur for 

doxorubicin both at the level of the cell membrane permeability [98] and subsequent DNA 

damage [100].  

Practically, a marked reduction in scalp temperature may lead to an increase in patient 

discomfort and therefore intolerance, so although ’more cold’ is beneficial, it may not always 

be feasible. Furthermore, the amount of temperature reduction possible for each person is 

likely to vary quite considerably due to individual physiological differences/variability [56], 

however, in most cases, ‘the colder the better’.  

 

4.2.2.1 Scalp cooling using cool caps  

Initially, scalp cooling was achieved using crushed ice in plastic bags fixed into position with 

elasticated bandages [103]. As heat from the head rapidly warmed the ice-packs, these 

needed to be replaced regularly; this was time-consuming and also meant that temperature 

increased between replacements [104, 105]. The number of countries and hospitals using 

scalp cooling increased dramatically following introduction of improved commercially available 

products. This involved a refrigerated cryogel cap, which is placed in a freezer at -25°C before 

being fitted to the head  (e.g. Penguin cold cap) [104]. However, because of the very low initial 

temperature these gel-caps are reported to be uncomfortable, and although better than ice-

packs, they still thaw rapidly and must be changed regularly to maintain reduced scalp 

temperature. Thus, several changes are required during chemotherapy perfusion protocols 

[104] and between replacements scalp temperature unavoidably increases [105].  

4.2.2.2 Modern scalp cooling devices  

Refrigeration unit-fitted devices designed to circulate liquid refrigerant through a cooling cap 

are the modern-day choice for scalp cooling. These caps, such as the Paxman (UK) and 

Dignitana (Sweden) systems, are available in a range of sizes to ensure a suitable fit, as head-

sizes and shapes vary [106]. The advantage of these systems is that the coolant achieves a 

constant, reduced scalp temperature throughout drug infusion without the need for cap 

replacement. This reduces medical staff time investment and also, because the caps are not 

cooled to such initially low temperatures (and are not as heavy), they are reported to be more 

comfortable. Recent studies by Komen et al (2016) have shown that 18°C can be reached at 

the scalp of patients throughout the course of chemotherapy infusion, and most patients 

tolerate this intervention very well, with the majority indicating either low or moderate levels of 

discomfort. Only 1 of 62 patients actually reported a mild headache even when the scalp 
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cooling device could reduce temperatures down to 10ºC within 30 minutes [56]. Other studies 

have shown that the drop-out rate due to intolerance is around 3.3% [107], however tolerability 

varies.  

4.2.2.3 Clinical evidence for the efficacy of scalp cooling in cancer patients   

Scalp cooling is the only FDA-cleared technique supported by statistically significant and 

clinical evidence-based efficacy for CIA reduction. Numerous studies have demonstrated that 

its clinical efficiency can reach ~90% depending on the chemotherapy agent and/or cooling 

technique used [64, 67].  

Auvinen et al (2010) showed that scalp cooling resulted in a significant reduction in CIA with 

100% of patients maintaining their hair after doxorubicin treatment, 83.3% after docetaxel, 

76.5% after FEC (5-fluorouracil, epirubicin and cyclophosphamide) and 78% after docetaxel 

or FEC [108].  

A larger and prospective multi-centre study conducted by van den Hurk et al (2012) explored 

the effect of scalp cooling on hair preservation in 1411 chemotherapy patients between 2006 

and 2009 [53]. The data was collected by the Dutch scalp-cooling registry, the mean age of 

the subjects was 53, with 86% having treatment for breast cancer and 96% of these being 

female. Treatments varied depending on the stage of the cancer and consisted of the 

following: 5 combinatorial regimes FEC or TAC (docetaxel, doxorubicin and 

cyclophosphamide), plus several monotherapies (single dose of anthracyclines and taxanes). 

Patients in the study used the Paxman PSC-1, PSC-2 or ORBIS scalp cooling devices, the 

median number of chemotherapy and cooling sessions was four [53]. The results were 

evaluated by questionnaires, with patients scoring their own hair loss according to the WHO 

scale. The best results were obtained following monotherapy treatments, for instance taxanes 

such as docetaxel (75mg/cm2) or paclitaxel (70-90mg/cm2) with 94% and 81% of patients, 

respectively, not requiring a wig. The results were less impressive in the case of the TAC 

combo-therapy, even when used at low doses, as only 8% of patients did not require a wig. 

Overall, 50% of all 1411 patients surveyed did not use head covering at the time of their last 

treatment. van den Hurk et al (2010) reported that besides the specific chemotherapy protocol, 

other factors can have an influence on the use of head cover, such as patient age (generally 

it is higher in those over 50), gender, ethnicity, and wetting before scalp cooling [53].  

Schaffrin-Nabe et al (2015) found out of 226 patients with variable chemotherapy regimens, 

146 (88%) had positive results from scalp cooling and did not require a head cover. The worst 

results were obtained with the highest anthracyline doses or polytherapies or when TAC was 

administered. Documentation of other variables, however, identified some of the factors other 

than high drug-dose that affect the success of cooling and these included co-morbidity, current 
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medications, age, menopause, hair thickness and nicotine intake [107].  Moreover, Komen et 

al (2016) showed that out of 62 breast cancer patients (median age 60) treated with up to 6-

cycles (median 3 cycles) of anthracycline (epirubicin or adriamycin) chemotherapy, 13 (12%) 

did not require a wig [56]. Cigler et al (2015) evaluated the effects of scalp cooling on 20-

patients receiving docetaxel and cyclophosphamide with a total of 4-cycles over 3-week 

intervals. Scalps were cooled 50 minutes before administration and for 4 hours afterwards.  

Upon follow up, only 2 out of 20 felt the need to wear a wig, whereas normally the vast majority 

undergo complete alopecia [54]. Ibrahim et al found that scalp cooling prevented up to 96% 

of patients requiring a wig after repeated cycles of taxanes or anthracycline and for those that 

did, it was due to higher doses of anthracycline treatment [109].  

More recently, Nangia and colleagues reported the results of the SCALP (Scalp Cooling 

Alopecia Prevention) clinical trial [110]. This is the first, randomised, multicentre trial (RCT) on 

scalp cooling (and the first RCT using scalp cooling devices) performed from 2013-2016 and 

tested the efficacy of cooling on 192 patients, with 119 patients receiving anthracycline or 

taxane treatment versus 63 receiving no intervention (controls). All patients in the control 

group needed a wig, whereas 50% of patients receiving scalp cooling did not. This study was 

terminated on ethical grounds, as the chance of preventing CIA using scalp cooling was so 

significant [110].  

In most studies, the pre-cooling period has been between 5 and 30 minutes to ensure that the 

scalp is cooled when the drugs reach the HFs [111-113], however recent evidence suggests 

it should be around 30-minutes [56, 105]. Another equally important consideration during scalp 

cooling is the period of time necessary to maintain cooling following completion of drug 

administration (infusion). Routinely, the cap remains in place during the administration of the 

chemotherapy drugs and also for a period after this, referred to as the post-infusion cooling 

time (PICT), which allows the drug concentration to drop below toxic levels before the HFs 

warm up. Although until recently, a 90-min PICT was recommended, van den Hurk et al (2012) 

specifically examined the effect of PICT in reducing CIA after docetaxel treatment and found 

that better results were obtained by reducing PICT from 90 min to 45 min [114]. This is 

presumably because once the plasma concentration of docetaxel drops below toxic levels, the 

warming of the scalp allows any drug that has accumulated during the course of chemotherapy 

to be more rapidly ‘flushed out’ of the scalp. This study indicated that some optimisation of 

cooling protocols might be required to improve the efficacy for different chemotherapy 

regimens [114, 115]. In line with this, Komen et al (2016) reported that even a 20-min PICT is 

as effective as the 45-min period [116]. Therefore, both of these studies represent potentially 

significant improvements in scalp cooling protocols. Shortening the PICT has the additional 
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advantage of reducing the time that patients would be required to spend in the treatment 

environment. 

Although some concerns have been raised as to whether scalp cooling could be associated 

with a higher incidence of scalp metastasis, there appears to be no evidence for a link between 

metastasis and scalp cooling [117]. Studies that have been conducted to specifically address 

this issue in patients with breast cancer, confirmed that scalp metastasis occurs very rarely, 

with an incidence between 0.03% and 3% in individuals that did not receive cooling, and this 

incidence is no different to that for individuals who received scalp cooling for whom the 

incidence was 0.04–4% [118]. In most cases reported so far, scalp metastases after scalp 

cooling was not the first metastatic site and thus any that occurred were part of a widespread 

metastatic disease and not related to scalp cooling. These observations are in accordance 

with recent studies demonstrating that use of scalp cooling has no effect on the breast cancer 

patient survival [119]. The lack of any association of scalp cooling with breast cancer 

metastasis is further supported by a recent, comprehensive systematic review and meta-

analysis reporting that scalp cooling does not increase the incidence of these rare scalp 

metastases [120]. Moreover throughout application of scalp cooling, only the outer part of the 

scalp to a depth of 2cm is affected, with no alteration of core temperature excluding any risk 

of hypothermia [101]. However, patients who are at risk of cold-induced urticaria, cold 

agglutinin disease, cryoglobulinemia, and post-traumatic cold dystrophy should be excluded 

from scalp cooling [109].  
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5. Conclusions  

Despite the success of adjunct chemotherapy in improving the outcome of cancers such as 

breast cancer, hair loss still represents a very significant psychological burden for cancer 

patients. Any intervention that could reduce the side-effects of chemotherapy would be 

expected to lead to improvements in both the initiation and completion of therapy, in patient 

quality of life, and possibly survival outcomes. Having provided a review of several biological 

and clinical aspects of CIA, here we ultimately focused on research demonstrating that scalp 

cooling is currently the only available safe and effective option for CIA reduction/prevention. 

Despite the well-established ~50% success rate of scalp cooling, clinical and biological 

evidence suggests that further improvement can be made. Improvements relating to changes 

in PICT have clearly demonstrated this. Another important aspect is the efficacy in delivering 

adequately low temperature to the scalp, and improving clinical staff expertise in fitting the 

cap, as well as the possibility of patient-specific cap design could prove important in increasing 

the currently-reported efficacy of scalp cooling. Finally, an improved understanding of the 

biological mechanisms of cooling may not only inform the cap design or temperature of choice, 

but also provide novel avenues for enhancing the capacity of scalp cooling to protect from 

CIA.   
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Figure captions  

 

Figure 1 Structure of the HF  

The schematic illustrates the organisation and structure of the human HF, including key 

areas of the organ, such as the bulge region, the outer route sheath (ORS) and inner root 

sheath (IRS), and the hair bulb that includes the hair matrix keratinocyte compartment and 

the dermal papilla region. Reprinted with permission from [121].   

 

 

Figure 2 The hair ‘cycle’   

Schematic diagram of the three main phases of hair cycle: the growth phase (anagen), the 

dystrophic phase (catagen), an extremely shortened resting phase (telogen) and the 

‘shedding’ of the hair (exogen). In anagen, the hair bulb is located deep inside the skin and 

hair grows towards the skin surface. The dermal papilla survives catagen and moves upward 

to the lowermost portion of the bulge, which then forms the secondary germ at its base 

during telogen. In telogen, the hair falls out and the hair bulb relocates down again as the 

new hair grows. At their cycle end, telogen HFs can be activated through a) mechanical 

depilation, b) pharmacologically, and c) by specific signalling factors (e.g. Wnt signalling), 

which stimulates a return to anagen and the generation of the new lower follicle and hair 

shaft. As the new hair grows in, the old hair is shed during exogen. The duration of each 

phase depends on the type, site and specific genetic programming of the follicle. 

 

 

Figure 3 Molecular regulators of apoptosis in the HF  

The diagram illustrates the expression pattern of pro-apoptotic (e.g. Fas, p53, Bax) and anti-

apoptotic (Bcl-2, survivin) molecules in the different HF compartments.  

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/15033704
http://www.ncbi.nlm.nih.gov/pubmed/15033704
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Tables  

 

 

Table 1 List of the main categories of commonly-used anticancer compounds    

 

 

The table lists the main categories of commonly-used anticancer compounds, their point of 

action in the cell cycle and the likelihood of causing CIA [122, 123]. Note: the likelihood to 

cause CIA relates to the clinical administration of each drug as a monotherapy. 

 

 

Usually causes CIA 
Occasionally causes 

CIA 

Unlikely to cause 

CIA 

D
N

A
 r

e
p

li
c

a
ti

o
n

  

(S
 p

h
a

s
e

) 

Topoisomerase inhibitors 

doxorubicin, epirubicin, 

daunorubicin, irinotecan, 

topotecan, etoposide, 

teniposide   

  

amsacrine  

  

– 

Alkylating agents 

cyclophosphamide, ifosfamide 

  

busulfan, melphalan, 

lomustine 

  

carmustine, 

procarbazine, 

streptozocin  

 

Antimetabolites 

– 

 

cytatarbine, gemcitabine, 5-

fluorouracil (5-FU) 

  

 

6-mercaptopurine (6-

MP), methotrexate, 

hydroxyurea, 

mitoxantrone, 

fludarabine, raltitrexed, 

capecitabine, idarubicin 

Platinum-based heavy 

metal alkylators           

– 

 

– 

  

 

cisplatin, carboplatin 
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Anti-cancer antibiotics 

– 

  

– 

  

mitomycin C 

M
it

o
s
is

  

(M
 p

h
a
s
e
) 

Anti-microtubule agents  

docetaxel, paclitaxel, 

vindesine, vinorelbine  

 

  

vincristine, vinblastine 

  

– 

 

 

 

 

 

Table 2 Currently available models for studying and understanding CIA  
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Model information Advantages Disadvantages References 

New-born/young rodents 

 hair is depilated from the 
rodents causing all HFs to 
enter anagen 

 7-8 days old rats have 
spontaneous hair growth 
for around a week 

  

 can experiment on hair 

growth arising from the 

anagen phased follicle 

 has a level of consistency 

  

 HFs are not matured 

 new born rats lack pigmentation thus 
melanogenesis cannot be studied 

 only shows how chemotherapy drugs affect 
anagen 

 in humans each follicle in a unique phase, 
whereas in the rodent they are all in anagen 

 

 

 

[124, 125] 

Adult C57BL6 mouse 

 adult mice with fully grown 
hair/mature/telogen 
phased HF have their 
hairs depilated 

 

 mature HF can be 
recognised by pigmentation 

 has a level of consistency 

 can experiment hair growth 

arising from the anagen 

phased follicle 

 in humans each HF in a unique phase, 
whereas in the rodent following depilation, 
they are all in anagen 

 anagen in humans lasts years as opposed to 
weeks in the mice 

 

 

[126] 

 Nude mouse human skin graft 

 human scalp skin is 
grafted onto nude mice, 
hair sheds within a month 
and then regrows 

 

 unique physiology of the 
human HF is better 
maintained 
 

 can experiment hair growth 

arising from the anagen 

phased follicle 

 the xenograft HF cycle is not yet well 
characterised 

 wound healing-, reinnervation-, and 
reperfusion-related phenomena are absent 
factors during normal in vivo scalp HF 
cycling 

 

 

[35, 127-129] 



Dunnill et al     Page 25 of 33 
 

 

25 
 

  

Ex vivo Cultured human HFs 

 anagen phased HFs are 
taken from the scalp and 
grown in the laboratory (in 
vitro) 

  

 HFs are human 

 HFs are in anagen 

 experiments can be well 
controlled 

 human HFs are difficult to obtain (need 
specialist clinicians and volunteers) 

 HFs can spontaneously enter catagen due 
to stress and/or structural damage 

 

 

[130, 131] 

In vitro keratinocytes 

 normal or immortalised 
skin cells, and normal HF 
keratinocyte cultures are 
grown in the laboratory (in 
vitro) 

  

 like human matrix 
keratinocytes cell are highly 
proliferative (relevant) 

 experiments can be  
extremely well controlled 
and repeated systematically 

 molecular mechanisms can 
be studied in detail 

 cell monolayers studied compared with the 
highly-structured, differentiated HF tissue 

 immortalised (not primary) cell lines have 
genetic mutations 

 

 

[102] 
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