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Appendix C Additions to Evaluation

C.1 Comparison Process

To be able to compare among execution times calcu-

lated using different CPUs, we decided to normalise
values using performance benchmarks available in [5].
These benchmarks assign an average mark to each CPU

which is an indicator of the achieved performance and
allows comparison: a CPU achieving a 2X mark is twice

as fast as a CPU achieving an X mark. Admittedly,
CPUs are not the only system characteristic that af-

fects performance; anything from memory to operating
systems to compiler setups can affect execution time.
However, a CPU-based comparison can, at the very

least, provide a crude estimate of what execution times
would be achieved if all experiments were run on the

same CPU.
Our experiments were performed on an Intel R© CoreTM

i7-740QM processor running at 1.73GHz. This CPU has

an average mark of 3207. [6] used an Intel R© Xeon R©

Dual CPU X5450 running at 3.0GHz, which has an av-

erage mark of 7592. To that end, execution times re-

ported in [6] are normalised using a correction factor
of 7592/3207=2.36. For the QoS-based selection exper-

iments in [2], a setup of two AMD AthlonTM64 FX-
74 running at 1.80GHz was used, which has an aver-
age mark of 2947. The correction factor for this case
is 2947/3207=0.92. [2] relies on the COCOA compo-

sition system [3], which was evaluated using an Intel R©

PentiumTM4 running at 2.80GHz. This CPU has an av-
erage mark of 315, hence the correction factor is 315/3207

= 0.098. Finally, [2] uses the EASY discovery system [4],

which was evaluated using an Intel R© CoreTMDuo T2050
processor running at 1.60GHz. This CPU has an aver-

age mark of 704, hence the correction factor is 704/3207
= 0.22.

As noted in the main paper, the execution times

achieved by [6] are significantly higher, even if we do

not use normalisation and disregard the fact that the

evaluation was run on a really powerful system. On the
other hand, the experiments in [3] and [4] were run on
considerably slower machines, but due to the performed

normalisation reported values are adapted to be 10 and
5 times faster, respectively, than what was originally

calculated.

C.2 Performance of Composition Planning

In order to evaluate functional composition via plan-
ning with WSSL, we ran a series of experiments, cal-
culating the time needed for the planner to produce a

valid service composition plan, given a set of services,

a1 a2

Fig. 1 Building block for sequential chains

an initial state and a goal state. The parameters that

are of interest in this evaluation are the following:

1. Specification repository size: we assume that differ-

ent implementations of the same functionality are
represented by a single specification, for the pur-
poses of functional planning. In the experiments,
we vary the size from 5 to 500 distinct specifica-
tions (i.e. functionalities), while each specification
consists of 1-2 IOPE quads, representing an aver-
age specification length. Depending on how many
actual implementations one can assume each speci-

fication corresponds to, the specification repository
may map to a service repository containing thou-
sands of concrete services.

2. Inclusion of ramifications: adding a ramification in-
creases specification size due to the inclusion of a

causal relationship. When ramifications are taken

into account in experiments, a ramification is added

to each specification, linking a primary effect to a
newly added secondary via a causal relationship.
Half of these ramifications are required to achieve

the plan goal, representing a case of higher than av-
erage complexity.

3. Complexity of composition heuristics: this is defined
in terms of the combination of control constructs
that is taken into account.

We assume three cases of increasing complexity. The

first case, shown in Fig. 1, contains sequential chains of
services with one IOPE quad each, based on the getLo-
cationofAddress and getDistanceBetweenLocations ser-
vices in OWL-S TC [1]. For each pair of services, the
output of the first one is the input of the second, while
the postcondition of the first is required as a precondi-

tion for the second. All inputs, outputs, preconditions
and postconditions are uniquely named. For this exper-
iment, we increased chain length from 2 to 500; chain
length variation is achieved by modifying the composi-
tion goal to include postconditions that require larger
and larger chains to be achieved.

The second case contains sequential chains of pairs

of services composed in parallel using the AND-Split/Join
control construct, as shown in Fig. 2. Both services are
customisations of getLocationofAddress in order to in-
clude two IOPE quads and follow the same conventions

that concern linking and naming as in the previous case.
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Fig. 2 Building block for chains of parallel executions
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Fig. 3 Alternating between atomic services and parallel pairs

For this experiment, we ranged from a sequence of 1
parallel pair to a sequence of 250 parallel pairs.

The third case combines the first two, containing
sequential chains of atomic services alternating with

AND-Split/AND-Join pairs, as shown in Fig. 3. In this

case, some services contain one IOPE quad, while others

contain two, in order to achieve the described alterna-
tion. Again, the same linking and naming conventions
apply. For this experiment, we varied sequence length

from 2 to 332.

For all three cases, we calculated separately the cost
of producing a single solution to the planning problem
and all possible ones; the former is interesting in order
to determine the least time required to generate a solu-

tion, while the latter corresponds to what is required for
the first phase of WSSL/SDF. Note that for any given

pair of services that can be executed in a state (i.e. their

poss clauses succeed), any of the control constructs can

be considered, since all foundational axioms evaluate to
true; however, only the first one defined in the heuristic
will be chosen, due to the declarative nature of FLUX.

In our experiments, we chose to order heuristics so that
sequence and AND-Split/Join are defined first; making

any other choice (e.g., choose OR-Split/Join instead)

would not affect evaluation results, since the cost of
checking any foundational axiom is the same. The use
of specific control constructs is expected to be dictated

explicitly in heuristic encodings.

The results of the three experiments are shown in

Figs. 4, 5 and 6. As evidenced in Fig. 4, searching for all

possible planning problem solutions, instead of a single
one, results in a 40% increase in computation time in

the sequential case, which is reasonable and expected,
given the cost of backtracking performed to find all so-
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Fig. 4 Scalability results for sequential-only plans
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Fig. 5 Scalability results for parallel-only plans

lutions. The effect is more severe in the parallel case
(Fig. 5), where we observe a twofold increase, due to
the increase of backtracking points caused by the spe-

cial poss and and state update and rules that are em-
ployed by AND-Split/Join. Finally, as shown in Fig. 6,
the most complex case results in a much less significant
increase in computation time, 20% on average. This is

explained by taking into account that the composition
plan is even more complex, hence requiring more time
to find a single solution; however the increase of back-

tracking points is not so severe, since we just add se-
quential steps to the parallel executions of the second

experiment.

As far as the effect of adding ramifications is con-
cerned, the severity is inversely proportional to compo-
sition complexity. In the simplest case, there is an 85%
increase in the time required to find all solutions; in

the parallel-only case, the increase falls to 60%, while
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Fig. 6 Scalability results for sequential/parallel combination
plans

in the most complex case, there is only a 30% increase.
This is due to the fact that, in the simpler cases, the ef-

fect of the effort to find a matching causal relationship
is more pronounced, since the amount of backtracking
performed by the planner is low; in more complex cases,

the complexity is already increased, rendering the ad-
dition of ramifications less significant.

In all cases, the increase is exponential with regard

to the repository size, which is to be expected since the
number of choice points grows exponentially. However,
computation time is kept at reasonable levels (under

1.5 sec) for 300 specifications, even for the more com-
plex cases. This breaking point is well above what is

expected in real-world service design scenarios, keeping
in mind that we are dealing with specification repos-

itories and not ones containing WSDL descriptions of

concrete services. Given also that a WSDL document
is much smaller than a WSSL specification document,

due to the limited amount of information described by
WSDL (mainly interface details), a WSSL repository
containing the same number of documents as a WSDL

repository is actually much larger. The relative stan-
dard deviation for the planning experiment is around
2% and is due to the fact that the planner follows the
same traversal path in each execution, when given the
same planning problem.

Concerning knowledge states, the fact that FLUX
employs negation as failure to prove knowledge (or lack

thereof) of a fluent means that the cost of evaluating
a knows or knows not clause is equivalent to that of

a holds or not holds one. Hence, there is no need to

conduct experiments that specifically employ knowl-
edge clauses. On the other hand, incomplete state spec-

ification using even a few constraints can quickly re-
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Fig. 7 Scalability results for functional discovery

sult in non-terminating executions when attempting to
find all solutions without employing restrictive enough

heuristics: the planner can always infer that the goal is
achieved under any possible action combination, pro-

vided that no constraint is violated. Hence, in such

cases, heuristic encodings do not only assist in restrict-
ing plan space, but also render planning based on in-

complete states realisable.

C.3 Performance of Functional Discovery

In this experiment, specification size was fixed to 5

IOPE quads, a value that exceeds typical specification
complexity: for instance, the most complex service in

OWL-S TC has 8 inputs, 2 outputs, but only a single
precondition and a single postcondition. Note that, in-
stead of repository size, we vary the equivalent param-

eter of discovery queries, from 200 to 5000 independent

queries. Note that the computation cost of 5000 such

queries is equivalent to checking 10 distinct task spec-
ifications against a repository of 500 service specifica-

tions. We examine three different cases, as follows:

1. Discovery fails at the earliest point for each specifi-
cation, due to not finding a match of the first pre-

condition fluent.
2. Discovery fails at the latest point, due to not finding

a match of the last postcondition fluent.
3. Discovery fails at a random point between the ear-

liest and latest points, inclusive.

The results, presented in Fig. 7, show that execu-

tion time increases linearly with the number of queries,

because process complexity is analogous to the number

of fluents (representing IOPEs) that need to be com-
pared. Note that in the case of earliest failure, compu-
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tation time is less than the minimum recordable time
in ECLiPSe (15 msec); however, we can expect that the
values, albeit too small to be recorded, still increase lin-
early. At the worst (and improbable) case of discovery
failing at the latest point for all 5000 queries, execution

time peaks at roughly 1 sec; at the average random
case, 5000 discovery queries require about 0.5 sec, or

0.1 msec per query on average, proving that it is scal-

able enough to be considered for complex composition
scenarios (see also Section C.6). Relative standard devi-

ation is insignificant, around 2-3% in the latest failure
case, while increasing slightly in the random case, to
values of 5-10% due to the fact that the included ser-
vice specifications exhibit higher variability.

C.4 Performance of Pruning

To investigate performance of the pruning process, we
consider an exceptionally complex setting of 1000 dif-
ferent sequential plans with 100 tasks per plan and 20

local QoS goals, while we vary the number of available
implementations for each task from 5 to 100 and prun-
ing success rate (i.e. what percent of plans are pruned)

from 10% to 100%, to cover all possible pruning cases.

Note that some of these values exceed what is generally

expected, so that we obtain a clearer view of pruning
behaviour, even in extreme situations. The results in
Fig. 8 show computation times that are one order of

magnitude lower than the planning process, with a lin-
ear increase in execution time. Higher pruning success

rates decrease execution time, since entire plans may
be discarded early, which explains also the low execu-
tion time for the case of 100% success rate: pruning is

always successful, leading to quickly discarding all of

the plans. Relative standard deviation ranges from 9%

to 14% for this experiment, increasing with the num-
ber of implementations and as success rate decreases.

These values are attributed to the fact that, in each

execution, the cause of pruning, i.e. the task for which
all available implementations violate a local QoS goal,
is randomly chosen; having more implementations to

choose from leads to a larger variation, either because
plans have not been pruned yet, or if the total number

of implementations is higher.

C.5 Performance of Ranking

Since the extended plan ranking process is not compu-
tationally complex, instead of evaluating execution time
scalability, we investigate optimality in terms of finding
heuristics that lead to extended plans that not only sat-
isfy all goals but do so in the best possible way, in terms
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Fig. 8 Scalability results for pruning
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Fig. 9 Optimality results for ranking

of the criteria that follow. We use the motivating sce-
nario as a basis and consider the process in Fig. 1 as the
optimal plan, a result of manually designing a service
composition that satisfies all functional goals. We exam-

ine the following three cases: only workflow-based rank-
ing criteria, only problem-dependent ranking heuristics
and combination of both. The workflow-based criteria

we employ are maximum execution path length and to-
tal number of tasks; the problem-dependent heuristics
are preferring plans that support the choice of setting
preferences and additionally preferring plans that sup-

port both parallelisation of get location/restaurant list

and get preferences; these enable the composite process
to cover all possible cases that are mentioned in the

motivating scenario.

Fig. 9 shows the top-three performance for each
case; in all cases, the actual three most optimal ex-

tended plans are ranked at the top (the one in Fig. 1,

plus variations that do not achieve a single criterion),
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but not always with the correct order. In Case 1 (only
workflow-based criteria), the order is reversed, with the
optimal plan ranked third, deviating 12.5% from the
highest ranking value. In Case 2 (only problem-dependent
heuristics), the optimal plan is ranked correctly at the

top; however, the other two results are flipped. Perfect
optimality is achieved in Case 3 where both types of cri-

teria are taken into account. These results show that,

for the case of the motivating scenario, workflow-based
ranking is not enough to yield perfect or near-perfect

optimality, whereas problem-specific ranking heuristics
can correctly yield the top-ranked plan, even without
taking problem-independent criteria into account.

C.6 Overall performance

In this section, we present an experiment that targets
overall performance of the proposed framework. While

previous experiments focused on investigating perfor-
mance of each framework phase by exploring wide ranges
of parameters of interest to test the limitations of WSS-
L/SDF, this experiment considers the average case (com-
pared to the previous ones) of a repository containing

600 services representing 200 distinct specifications (3
implementations for each task). Services in the repos-

itory are variations of the SendPayment service in the
WS-Dream dataset1 (which also provides actual QoS
measurements from deployment). These variations re-

alise 1 to 5 payment transactions, so that we result in
services with 1 to 5 IOPEs. Specifically, 90 specifica-
tions (45% of the repository) realise 90 distinct pay-
ment transactions, labeled from 1 to 90; 60 specifica-
tions (30% of the repository) realise pairs of transac-
tions (those numbered 1 and 2, those numbered 2 and
3, and so on); 30 specifications (15% of the repository)
realise three transactions each; 15 specifications (7%
of the repository) realise four transactions each; and 5
specifications (3% of the repository) realise five trans-
actions each. For each of the 5 cases, we choose an in-
creasing number of payment transactions that need to
be processed, in order to result in composition problems

of varying complexity: Case 1 involves 10 consecutive

transactions numbered 40 to 49, Case 2 involves 11 (till

50), Case 3 involves 12 (till 51), Case 4 involves 13
(till 52) and Case 5 involves 14 (till 53). these values

represent a realistic distribution of quad numbers. Ad-

ditionally, a causal relationship is added to half of the
specifications.

For each of these cases, we calculate the total run-
time for all four phases of WSSL/SDF. Beginning with

1 http://wsdream.github.io

the planning phase, the planner results in the following
sets:

– Case 1: 3 plans of length 9
– Case 2: 5 plans of length 9-10

– Case 3: 20 plans of length 9-12
– Case 4: 112 plans of length 10-14

– Case 5: 2167 plans of length 10-17

The observed variation in the number of plans is a
direct consequence of the defined goals: from case to
case the selected goal leads to longer chains, with more

possible combinations for each pair in the chain. Follow-
ing planning, we evaluate functional discovery for each
case. We assume the median situation where the failure

point is halfway through the specification. Given that
each composition is a chain of services that is a subset

of the repository and examining the different specifica-
tions that are involved in each plan, we calculate the

maximum number of distinct specifications (and discov-

ery runs) as follows. For Case 1, there are 10 distinct
specifications that realise single transactions numbered

40 to 49; there are 10 specifications that realise these
transactions, but in consecutive pairs (39 and 40, 40
and 41, and so on); similarly, there are 9 specifications

that realise these transactions in groups of three, 8 in

groups of four and 7 in groups of five. This results in

44 distinct specifications. However, Case 1 consists of
only 3 abstract plans of length 9, meaning that there
cannot be more than 27 distinct specifications taking

part in these plans. For Case 2, there are 11 distinct
specifications that realise single transactions numbered

40 to 50; there are 11 specifications that realise these
transactions, but in consecutive pairs (39 and 40, 40
and 41, and so on); similarly, there are 10 specifications

that realise these transactions in groups of three, 9 in

groups of four and 8 in groups of five. This results in 49

distinct specifications at most. Following the same pat-
tern for the next three cases, we result in 54 maximum

distinct specifications for Case 3, 59 for Case 4 and 64

for Case 5. Considering a success rate that leads to 10%
of abstract plans being discarded because no matching
implementation could be discovered for all tasks of the

plan, the following sets of extended plans are produced:

– Case 1: 3 plans with 9 tasks
– Case 2: 5 plans with 10 tasks

– Case 3: 18 plans with 11 tasks on average
– Case 4: 101 plans with 12 tasks on average
– Case 5: 1951 plans with 14 tasks on average

Conducting pruning based on 5 local QoS goals and
ranking based on plan length and number of tasks per
plan, we result in the following optimal extended plans

that are fed to the final phase, the QoS-based selection
process:
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Fig. 10 Overall performance for the first three phases
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Fig. 11 Overall performance for the fourth phase (QoS-
based selection)

– Cases 1-3: Sequential plan with 9 tasks, 3 imple-
mentations for each task and 3 QoS profiles for each

implementation that survive pruning.
– Cases 4-5: Similar to the other cases, but with a

sequence containing 10 tasks.

Fig. 10 shows the computation time for the first
three phases, while Fig. 10 shows the computation time

of QoS-based selection for the optimal extended plan,
varying global QoS goals from 1 to 20. Fig. 12 combines
the results of all four phases in a single graph. The re-

sults indicate that the majority of computation time,
except in Case 5, is attributed to functional discovery,

because we assume the worst case (maximum number

of discovery runs per plan), as well as to QoS selection,
which requires a similar amount of computation time on
average. The pruning/ranking cost is negligible in com-
parison, since this phase has the least computational
complexity. For QoS-based selection, there is no signif-

icant variation in computation time when we increase
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Fig. 12 Overall performance for all phases of WSSL/SDF

the number of global QoS goals. This behaviour im-

plies a threshold after which the complexity of the MIP

problem becomes more significant than the possibility
of discarding candidate QoS offerings sooner, due to the

increase in the number of constraints. Relative standard
deviation is insignificant, averaging around 4%. In Case
5, a 20-time increase in the number of plans results in
a similar increase in computation time, which peaks at
1.35 seconds, a rather satisfactory value for design time.
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