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ABSTRACT 

 

As key mechanical components, bearings and gearboxes are employed in most machines. 

To maintain efficient and safe operations in modern industries, their condition monitoring 

has received massive attention in recent years. This thesis focuses on the improvement of 

signal processing approaches to enhance the performance of vibration based monitoring 

techniques taking into account various data mechanisms and their associated periodic, 

impulsive, modulating, nonlinear coupling characteristics along with noise contamination. 

Through in-depth modelling, extensive simulations and experimental verifications upon 

different and combined faults that often occur in the bearings and gears of representative 

industrial gearbox systems, the thesis has made following main conclusions in acquiring 

accurate diagnostic information based on improved signal processing techniques: 

1) Among a wide range of advanced approaches investigated, such as adaptive line 

enhancer (ALE), wavelet transforms, time synchronous averaging (TSA), Kurtogram 

analysis, and bispectrum representations, the modulation signal bispectrum based sideband 

estimator (MSB-SE) is regarded as the most powerful tool to enhance the periodic fault 

signatures as it has the unique property of simultaneous demodulation and noise reduction 

along with ease of implementation. 

2) The proposed MSB-SE based robust detector can achieve optimal band selection and 

envelope spectrum analysis simultaneously and show more reliable results for bearing fault 

detection and diagnosis, compared with the popular Kurtogram analysis which highlights 

too much on localised impulses.  

3) The proposed residual sideband analysis yields accurate and consistent diagnostic 

results of planetary gearboxes across wide operating conditions. This is because that the 

residual sidebands are much less influenced by inherent gear errors and can be enhanced 

by MSB analysis. 

4) Combined faults in bearings and gears can be detected and separated by MSB analysis. 

To make the results more reliable, multiple slices of MSB-SE can be averaged to minimise 

redundant interferences and improve the diagnostic performance. 
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Chapter 1  
Introduction 

This chapter provides an introduction to the research background in association with the 

work presented in this thesis. It describes the research background, introduces common 

techniques of condition monitoring and presents the motivation for pursuing this research. 

In addition, it provides the aims and objectives of the research. Finally, it outlines the 

organisation of the thesis. 
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1.1 Background of condition monitoring 

With the rapid development of modern industry, science and technology, industrial 

machinery equipment and plants are increasingly becoming large-scale, high-speed, 

integrated and automated. Due to unforeseen factors, a wide variety of faults and failures 

could arise in the equipment, resulting in performance decreases, economic losses and even 

catastrophic accidents. Condition monitoring allows for the early detection of such costly 

faults and failures, and identifies the condition and nature of faults quickly. Corresponding 

actions can then be implemented to prolong the machine operation life [1]. Therefore, the 

research of condition monitoring techniques can help ensure the equipment operation’s 

reliability, obtain greater economic benefit, and detect any abnormal status promptly. 

The condition monitoring of a machinery component or parts is achieved by collecting a 

variety of information (such as vibration, acoustics, pressure, temperature, oil sample, etc.) 

to achieve the physical and statistical parameters (known as features for brevity) that can 

reflect the operating status of the equipment, hence allowing accurate decision-making for 

a timely and effective maintenance [2]. The information is collected by sensors, which 

could transfer the information into electrical or other physical signals, then applying signal 

processing to obtain the feature parameters. The main purpose of machine condition 

monitoring is to get accurate and quantitative information regarding the machinery’s 

current working condition and determine whether the operating status is normal or faulty 

[3].  

The procedure of condition monitoring normally consists of three steps: data acquisition, 

data processing and decision making [4]. As the middle step, data processing is probably 

more critical to the success of condition monitoring, which will be discussed in more detail 

in Section 1.3, as appropriate data processing techniques allow effective noise reduction 

and correct feature extraction that ensures the decision obtained is reliable and accurate. 

1.2 Vibration based condition monitoring 

Nowadays, many condition monitoring techniques have been developed, such as vibration 

analysis [5][6][7], airborne acoustics analysis [8][9], lubricant analysis [10], acoustic 

emission [7][11][12], temperature [13][14], motor current signal analysis [15][16] etc. 

Amongst these techniques, vibration analysis is the most popular approach in machine 

fault diagnosis, because vibration responses are non-destructive, easy to measure, and 
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sensitive to a wide range of defects. These merits make it very promising as a 

comprehensive and cost-effective method for condition monitoring applications.  

In condition monitoring practice, vibration signals are usually acquired by accelerometers 

which are non-intrusively mounted on the external surfaces of a machine. The sensor 

installation encounters rare problems in industry. The signals are amplified and analysed to 

reveal information about the health of the machine. Although the measuring instruments 

are of wide frequency responses, high dynamic ranges, high temperature capability and 

hence high reliability, they are becoming inexpensive due to the rapid development of 

electronics and manufacturing efficiency.  

These signals are analysed using common signal processing techniques such as peak values, 

root mean square (RMS) values, crest factor, frequency spectrum, cepstrum, wavelet and 

higher order spectral analysis [17]. Vibration analysis monitors the dynamic response of 

the machine or equipment to the different excitation forces which are applied to it. These 

forces exist in any machine and are produced by various physical mechanisms ranging 

from inevitable friction and wear to repetitive impacts. The response is analysed to reveal 

information regarding the health of the machine. Vibration analysis has traditionally been 

recognised as one of the most powerful condition based maintenance technologies, and the 

keystone of many predictive maintenance programs, since all rotating machines produce 

vibration in some form. The technique is therefore generally employed for the trouble-

shooting and fault diagnosis of rotating machinery and equipment [17]-[20].  

The shafts, gears and bearings in a gearbox will generate vibrations during its operation. 

Vibration signals carry the fault information of a gearbox; if there is any fault occurring in 

the energy distribution, the vibration signal will change accordingly. Because vibration 

based fault diagnosis is reliable, cheap, and easy to operate, it has been widely applied in 

the field of condition monitoring and fault diagnosis.  

Defects in gearboxes or bearings (such as surface pitting, broken teeth, gently curved 

shafts, joint looseness and fatigue spalling in bearings) will produce repetitive impacts, 

resulting in a modulation phenomenon in vibration signals. In the frequency spectrum, 

sidebands will appear near the resonance frequency or gear mesh frequencies. Therefore, 

demodulation is an important process in the signal processing of the gearbox and bearing 

condition monitoring and fault diagnosis. The commonly applied techniques include 

spectrum analysis, time synchronous average, Hilbert transform, resonance demodulation 

method, and envelope analysis [21][22]. 
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In the research areas of failure mechanism and feature extraction of gearboxes, many 

problems are involved due to the complication in machine structures, harsh working 

environments, and many different types of interferences. Therefore, this thesis focuses on 

developing more advanced fault diagnosis methods based on vibration analysis. 

1.3 Signal processing techniques for vibration signals 

In applications, the vibration signals acquired suffer interference from various noises. As a 

result, useful information is submerged intensely. Therefore, it is critical to reduce noise 

and enhance the signal-to-noise ratio (SNR) for more reliable feature extraction. To this 

end, vibration signal processing techniques have attracted massive attention in the 

condition monitoring and fault diagnosis research areas, leading to many useful techniques. 

Based on fundamental signal processing techniques, they may be examined through the 

following categories: 

1.3.1 Time domain analysis 

Time domain analysis is directly based on the time series itself. Statistical parameters are 

the simplest method of feature extractions. There are several popular time domain analysis 

approaches for the vibration signal analysis of rotating machinery, which have the effect of 

denoise, such as correlation analysis, adaptive filters and TSA. 

1.3.1.1 Statistical parameters 

Statistical parameters are indices calculated from the time domain waveforms of vibration 

signals. They can be divided into dimensional parameters (such as minimum value, 

maximum value, mean value, variance, standard deviation, root mean square, etc.) and 

non-dimensional parameters (such as kurtosis, shape factor, crest factor. impulse factor, 

peak value, etc.). Dimensional parameters are related more to the operating conditions, 

such as the transmission ratio of the gearbox and the rotational speed of the shaft. Kurtosis 

and crest factor are sensitive to strong impulses and can be used for abrupt faults diagnosis. 

1.3.1.2 Correlation analysis  

Correlation analysis includes auto-correlation and cross-correlation analysis.  

Autocorrelation is widely used to find periodicity in a noisy signal. The autocorrelation 

function can be applied for random noise reduction and feature extraction [23]. The 

autocorrelation enhancement is defined as: 

1( ) { ( )}xx xxR F F  x  .................................................................................................... (1.1) 
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where: 

2
ˆ( ) ( )xxF X fx  ........................................................................................................... (1.2) 

ˆ ( )X f  is the power spectrum of a signal ( )x t , 1F  denotes the operation of the inverse 

transform of the Fourier transform. 

One typical application is the cyclic autocorrelation analysis for emphasising the 

correlation between components of weaker energy compared to those of greater energy 

[24].  

The cross-correlation is a measure of similarity between two signals. If both signals 

contain a periodic component and their period are equal, the cross-correlation function 

contains the same periodic component. This feature is important in the applications of 

signal detection and feature extraction. 

1.3.1.3 Adaptive filters 

The application of adaptive filters for extracting a fault signal from background noise is 

based on the assumption that the frequency components of the fault signal should be 

different from the noise. For example, the background noise is continuous while the fault is 

impulsive. The impulsive behaviour implies that the frequency components will be spread 

out over many frequency bins due to its impulsive temporal characteristics [28].  

On the other hand, adaptive filters have good noise attenuation performance for periodic 

background noise, whose frequency is low but the amplitude is much higher than the 

impulsive component. The adaptive filter is capable of tracking the statistics of 

nonstationary signals if changes in the statistics occurred slowly in comparison with the 

convergence time of the adaptive filter. However, the impulsive content in the signal is of a 

short duration and cannot provide sufficient time for algorithm convergence. Therefore, the 

impulsive component that contains faulty characteristics can be extracted from background 

noise.  

1.3.1.4 Time synchronous average 

In experimental vibration signals, there are high levels of random noises which will affect 

the accuracy of fault diagnosis, especially random impulses which can confuse the 

periodicity of fault impulses. In such studies, the time synchronous average (TSA) 

technique can be applied to suppress the random noises. TSA resamples the vibration data 

synchronously according to the angle of rotation.  
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When taken over many machine cycles, this technique removes background noise and 

nonsynchronous events (such as impulses and meshing components from other gear 

transmission stages) in the vibration signal. It is extremely useful when monitoring 

multiple shafts which are operating at only slightly different speeds and in close proximity 

to one another. For the implementation of TSA, a reference signal (usually from a 

tachometer) is always needed. However, it can be inefficient at reducing some tonal 

components of the background noise, i.e. those that are commensurate (or nearly 

commensurate) with the rotational frequency. 

1.3.2 Frequency domain analysis 

Frequency domain analysis is based on the Fourier transform and commonly applied in 

rotation machinery fault diagnosis. In the frequency domain, it is easy to get the shaft 

rotational frequencies, gear mesh frequencies, bearing fault frequencies and their 

harmonics. Frequency analysis can indicate the fault location in gearboxes and bearings 

and further analyse the causes of failures. Frequency analysis mainly includes spectral 

analysis, cepstrum analysis and demodulation spectral analysis. 

1.3.2.1 Spectrum analysis 

Spectrum analysis is the most commonly used method for machinery condition monitoring 

and fault diagnosis. It describes the distribution of the original signal in the frequency 

domain and provides feature information more straightforwardly than in the time domain. 

Spectrum analysis includes the amplitude spectrum and the power spectrum. The 

amplitude spectrum represents the amplitude corresponding to each frequency component 

while the power spectrum shows the distribution of the power.  

1.3.2.2 Cepstrum analysis 

“Cepstrum is defined as the power spectrum of the logarithm of the power spectrum.”[30] 

It is an important signal processing technique for detecting the periodic components in a 

complex spectrum in recent decades. By applying the cepstrum analysis to the signal 

power spectrum, it is capable of identifying the composition of the signal, enhancing the 

periodic components, and converting the spectral lines in the original spectrum into a 

single line in cepstrum. Thus, complex periodic components become legible for machinery 

condition monitoring and fault diagnosis [31]. When a defect appears on bearings or gears, 

there are multiple clusters of modulation sidebands in the vibration spectra. Then, it is easy 

to identify the fault frequency and defect location using cepstrum analysis, but it does not 

have the capability of denoising. 
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1.3.2.3 Envelope analysis 

Envelope analysis is also called demodulation analysis, which can be used to extract the 

low-frequency signal that modulated on the high-frequency carrier signal. For rolling 

element bearings, when the rolling elements strike a local fault on the inner or outer race, 

or a fault on a rolling element strikes the inner or outer race, an impact is produced. These 

impacts modulate a signal at the associated bearing pass frequencies and then stimulate the 

resonance vibration of the machine. Envelope analysis can obtain the fault feature 

frequency from the raw data. The envelope of the analytic signal is calculated by [32]: 

2 2( ) ( ) [ ( )]a t x t H x t   ............................................................................................. (1.3) 

where [ ( )]H x t  denotes the Hilbert transform of signal ( )x t . 

1.3.3 Time-frequency domain analysis 

In signal processing, time-frequency analysis [33] is used for characterising and 

manipulating signals whose statistics vary in time, such as impulsive components. It is a 

generalisation and refinement of Fourier analysis, for the case when the signal frequency 

characteristics are varying with time. Since many signals of interest (such as speech, music, 

images, and medical signals) have changing frequency characteristics, time-frequency 

analysis has a broad scope of applications. 

1.3.3.1 Short-time Fourier transform 

Traditional time-frequency analysis represents the energy or power of signals over both 

time and frequency jointly, in order to better reveal fault patterns for more accurate 

diagnostics. The Short-time Fourier transform (STFT) is the most popular time-frequency 

representation (TFR) as it can be obtained by applying FFT to a short segment signal 

segregated by a window moving incessantly along the time direction. By examining the 

frequency content of the signal as the time window moves, a 2D time-frequency 

distribution is generated. One well-known drawback of the STFT is a resolution limit 

imposed by the window function, which leads to worse frequency resolution. 

The basic idea of STFT [34] is to slice up the signal into suitable overlapping time 

segments (using windowing methods) and then Fourier analyse each slice to ascertain the 

frequencies contained in it. It is assumed that frequency information is associated with the 

time index in the middle of each slice of windowed data. The STFT of a continuous-time 

signal ( )x t  is defined as 



CHAPTER 1 

30 

2( , ) ( ) ( ) j fSTFT t f x w t e d   
   ......................................................................... (1.4) 

where ( )w t  is the window function whose position is translated in time by  . There are 

some limitations associated with STFT, the first being the window length. It is obvious that 

a wide window yields a good resolution in the frequency domain, but the poor resolution in 

the time domain, and vice versa. So, in practical situations, a compromise between the two 

resolutions has to be made. Secondly, raw STFT is computationally expensive, but ways of 

accelerating it by avoiding redundant calculations are now available in the literature. These 

drawbacks notwithstanding, STFT is an ideal tool in many respects, the most important 

being its excellent spectrogram structure, which is consistent with our intuition regarding 

frequency spectra, thereby qualifying as a good visualisation tool. 

1.3.3.2 Wigner–Ville distribution 

Time-frequency analysis focuses on a distribution of the total energy of the signal at a 

particular time and frequency. The Wigner-Ville distribution (WVD) [35] is the first to be 

introduced and has been most widely studied. It was developed in quantum mechanics by 

Wigner and implemented for signal processing by Ville [36]. The WVD of a signal ( )x t  is 

defined as 

* 2( , ) (t ) (t )e
2 2

j f
xW t f x x d  


    ...................................................................... (1.5) 

where * is the conjugate operator and   the time lag. 

The Wigner–Ville spectrum is related to the expected value of WVD, and is introduced for 

the time–frequency analysis of nonstationary random signals 

* 2 2( , ) ( ) ( )e ( , )e
2 2

j f j f
x xEW t f E x t x t d R t d    

    
 

 
     

 
 ...................... (1.6) 

where  E  is the mathematic expectation operator and ( , )xR t   the time-varying 

autocorrelation: 

*( , ) ( ) ( )
2 2

xR t E x t x t
 


 

   
 

 ...................................................................................... (1.7) 

1.3.3.3 Wavelet analysis 

The main purpose of the wavelet transform is to decompose arbitrary signals into localised 

contributions that can be labelled by a “scale parameter”. 
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The wavelet transform provides a good means of studying how the frequency contents 

change with time and consequently is able to detect and localise short-duration impulse 

components. Wavelet coefficients measure the similarity between the signal and each of its 

daughter wavelets. The more the daughter wavelet is similar to the feature component, the 

larger is the corresponding wavelet coefficient. 

Wavelet transforms [37] are inner products between signals ( )x t  and the wavelet family, 

which are derived from the mother wavelet by dilation and translation. Letting ( )t  be the 

mother wavelet, the daughter wavelet will be: 

,
1

( )a b
t b

t
aa

 
 

  
 

 .................................................................................................. (1.8) 

where a  is the scale parameter and b  is the time translation. By varying the parameters a  

and b , different daughter wavelets are obtained to constitute a wavelet family. The wavelet 

transform of a signal ( )x t  is defined as 

*1
( , ) ( )x

t b
WT a b x t dt

aa




 
   

 
 ............................................................................... (1.9) 

where ( , )xWT a b  represents the wavelet transform coefficients, and * denotes the 

conjugation operation. The factor 
1

a
is used to ensure energy preservation.  

1.3.4 Other signal processing methods 

1.3.4.1 High order spectral analysis 

Spectral kurtosis 

Spectral kurtosis (SK) is a powerful tool for detecting the presence of impulses in a signal, 

even when they are buried in strong additive noise; this is done by indicating which 

frequency bands the impulses are taking place. The kurtogram optimisation considers a 

variety of bandwidths and central frequencies. It is basically a cascade of SK obtained for 

different values of the STFT window length. 

The spectral kurtosis of a signal ( )x t  may be computed from the STFT, ( , )X t f , that is the 

local Fourier transform at the time t  obtained by moving a window along the signal. When 

seen as a function of frequency, the squared magnitude
2

( , )X t f —i.e. the spectrogram—

returns the power spectrum at the time t  and is a further average over time, 
2

( , )X t f  , 
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the PSD as computed by the Welch method. When seen as a function of t , ( , )X t f  may be 

interpreted as the complex envelope of signal ( )x t  bandpass filtered around frequency f  

and its squared magnitude will then indicate how energy is flowing in that frequency with 

respect to time. If that frequency band happens to carry pulses, bursts of energy will then 

appear. This may be simply detected by computing the kurtosis of the complex envelope 

( , )X t f  as follows: 

4

2
2

( , )
( ) 2

( , )

X t f
K f

X t f

   .............................................................................................. (1.10) 

where the subtraction of 2 is used to enforce ( ) 0K f   in the case ( , )X t f  is complex 

Gaussian (instead of 3 for real signals).  

Conventional bispectrum 

The conventional bispectrum is the third-order cumulant over frequencies. It is a function 

of two frequencies 1f  and 2f . The equation can be expressed as [38]: 

1 2 1 2 1 2
1

1
( , ) ( ) ( ) ( )

M

m

B f f X f X f X f f
M





   .................................................................. (1.11) 

It is calculated by averaging the triple products of Fourier coefficients over M  segments. 

The bispectrum is capable of detecting the nonlinear interactions between frequency 

components at 1f , 2f  and 1 2f f , which represent quadratic phase coupling. This will be 

discussed in detail in Chapter 2 and Section 3.6.1. 

The bispectrum has several important properties [39], which are an important theoretical 

basis for random noise suppression in mechanical signal processing. These properties are 

detailed as follows: 

(1) The bispectrum of a stationary, zero-mean Gaussian process is zero. Thus a non-zero 

bispectrum indicates a non-Gaussian process.  

(2) The bispectrum suppresses linear phase information or constant phase shift information. 

(3) The bispectrum is flat for non-Gaussian white noise and is zero for Gaussian white 

noise.  
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Modulation signal bispectrum  

Modulation signal bispectrum is developed based on the conventional bispectrum. It is 

suitable for detecting the nonlinear interactions between the carrier and two sidebands of 

an amplitude modulation signal. The mathematical expression can be written as [40]:  

1 2 2 1 2 1 2 2
1

1
( , ) ( ) ( ) ( ) ( )

M

MS
m

B f f X f f X f f X f X f
M

 



    .......................................... (1.12) 

where 2f  is the carrier frequency; 2 1f f  and 2 1f f  are the two sidebands of the 

modulation signal. More details and applications of this method will be introduced in 

Chapter 2 and Section 3.6.2, in which novel refinements are suggested to enhance the 

signal of interest. 

1.3.4.2 Signal decomposition methods 

Empirical Mode Decomposition 

EMD is one of the most powerful time-frequency analysis techniques. It is based on the 

local characteristic time scales of a signal and can decompose the signal into a set of 

complete and almost orthogonal components called intrinsic mode function (IMF). The 

IMFs indicate the natural oscillatory mode embedded in the signal and serve as the basis 

functions, which are determined by the signal itself, rather than pre-determined kernels. 

Thus, it is a self-adaptive signal processing technique that is suitable for nonlinear and 

nonstationary processes [41]. 

Local mean decomposition  

Local mean decomposition (LMD) is a data-driven and novel self-adaptive analysis 

method in the time-frequency domain. It was proposed by Smith in 2005 and firstly 

applied to electroencephalogram signal successfully [42]. The multi-component signal can 

be decomposed into a series of mono-components which are product functions (PFs); 

therefore, each of them is the product of an envelope signal and a purely frequency 

modulated signal. The instantaneous amplitude of PF can come from an envelope signal, 

and the well-defined instantaneous frequency can be calculated from a purely frequency 

modulated signal. In essence, each PF is an amplitude-modulated and frequency-modulated 

signal (AM-FM signal) [43].  
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Local characteristic-scale decomposition 

Local characteristic-scale decomposition (LCD) was proposed by J. Cheng in 2012. LCD 

can decompose any complicated signal into a number of intrinsic scale components (ISC), 

whose instantaneous frequencies have physical meaning. It is especially suitable for 

processing a multi-component amplitude-modulated and frequency-modulated signal. 

Since the gear fault vibration signal is a multi-component amplitude-modulated and 

frequency-modulated signal, the local characteristic-scale decomposition method is 

especially applicable for gear fault diagnosis [44]. 

1.4 Motivation of the research 

Gearboxes and bearings are fundamental mechanical parts and widely used in various 

machines such as wind turbines, helicopters and marine propulsions. The reliability of their 

high performance operation is a critical issue in industry, because the occurrence of 

unexpected failures may lead to catastrophic accidents and cause severe economic losses. 

Therefore, it is necessary to conduct condition monitoring and fault diagnosis for 

gearboxes and bearings in order to reduce equipment operational cost and risk [45]. 

Defects in gears or bearings, such as surface pitting, broken teeth, gently curved shaft, joint 

looseness and fatigue spalling, will produce repetitive impacts during rotary motion. 

During the signal transmission from the source to the transducer, the amplitude modulation 

will be induced by the resonance frequency of the system, rotation of the shaft, load effect, 

and dynamic meshing forces. Therefore, the fault features for gears and bearing have some 

similar characteristics, such as impulsive, periodic, modulation.  

In practical applications, some mechanical equipment defects often induce other defects 

rather than occur alone, resulting in the occurrence of combined faults. A combined fault is 

composed of two or more defects simultaneously or induced by one defect, which are 

interrelated and cross-impact. The combined fault could be composed by defects on 

different components or having different severities on mechanical equipment. Moreover, 

there are mutual interference and intercoupling between different defects, which makes the 

signal more complicated. Therefore, combined fault diagnosis is a challenging problem in 

the field of machinery fault diagnosis. The vibration signals of combined fault in rotating 

machines also exhibit impulsive, periodic and modulation characteristics, which are similar 

with gearboxes and bearings. Therefore, the combined fault diagnosis has been studied 
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based on experimental data. Before the study combined fault diagnosis, several signal 

processing techniques have been proposed for bearing and gear fault diagnosis separately. 

In the signal processing of practical signals, noise is inevitably induced by the data 

collection process, environmental disturbances, structural distortions and interferences 

from other machines and related components. Although the To implement reliable fault 

detection and diagnosis for gears and bearings, this research focuses on the denoising and 

feature extraction from vibration signals utilising the impulsive, periodic and modulation 

characteristics of fault mechanisms. 

1.5 Aims and objectives of the research 

The aim of this research is to develop efficient signal processing techniques capable of 

enhancing vibration signatures for higher performances of detecting and diagnosing 

common faults in gears and bearings. Based on a rigorous study of previous investigations, 

it has regarded largely that the advanced signal processing techniques for condition 

monitoring are often carried out by either a direct enhancement of signatures or a noise 

reduction based enhancement. Although each of these two approaches achieves 

satisfactory performance improvements, they often have the deficiency in signature 

enhancement and implementations. Moreover, they are rarely combined to jointly achieve 

the signature enhancement. Therefore, the aim of this research is fulfilled by overcoming 

these deficiencies, which are then carried out by completing the following refined key 

objectives: 

1. Review the commonly used vibration signal processing techniques for machinery 

condition monitoring and fault diagnosis. 

2. Investigate the vibration signal models of gear defects, bearing defects and the 

combined faults to study the fault characteristics and provide the primary bases for 

signal processing. 

3. Develop optimal impulse enhancement methods based on ALE and wavelet analysis 

techniques to improve the SNR of vibration signals for gearbox fault diagnosis.  

4. Investigate the kurtogram analysis and develop a filter for obtaining an optimal 

envelope that enhances the impulsive components due to bearing defects. 

5. Develop effective approaches and algorithms for planetary gear fault detection and 

diagnosis based on MSB analysis to utilise the modulating characteristics of signals. 
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6. Propose a signal processing approach for diagnosing the combined fault on both the 

gear and bearing through MSB analysis based on the multiple and asymmetric 

modulating characteristics. 

1.6 Organisation of the thesis 

In this section, an outline is given of the contents and relative emphasis of the following 

chapters for the thesis.  

Chapter 2 studies the vibration signal models of the bearing defect, gear defect and 

combined faults on both the bearing and gear, which provides theoretical foundations for 

developing signal processing algorithms. 

Chapter 3 overviews six signal processing techniques for machinery condition monitoring 

and fault diagnosis, including ANC, wavelet analysis, kurtogram, conventional bispectrum, 

MSB, and TSA.  

Chapter 4 describes an impulse enhancement method for a two-stage helical gearbox fault 

diagnosis based on TSA and ALE.  

Chapter 5 develops a gear fault diagnostic approach for a two-stage helical gearbox fault 

diagnosis based on adaptive wavelet analysis.  

Chapter 6 details a bearing fault diagnostic method based on kurtogram and envelope 

analysis.  

Chapter 7 develops a robust detector for rolling element bearing condition monitoring 

based on the MSB and compares its performance evaluation against that of the kurtogram.  

Chapter 8 describes a residual sidebands based fault diagnostic approach of a planetary 

gearbox using MSB analysis.  

Chapter 9 proposes a combined fault diagnostic method of a planetary gearbox based on 

MSB.  

Chapter 10 draws conclusions for this research and gives suggestions for future work in 

related research areas.   
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Chapter 2  
Vibration signal models of bearings and gears 

Signal characteristics are of primary concern in selecting effective signal processing 

techniques. To attain diagnostic features accurately for vibration based monitoring, this 

chapter examines the vibration signal models of roller bearings and helical gears, which 

are the most critical and popular components of rotating machines. It starts with 

presenting common vibration models. Then, two analytical signal models are investigated 

for bearing faults and helical gear faults, respectively. Finally, a combined signal model 

for both the bearing and gear faults is developed based on a two-stage helical gearbox 

model. This chapter provides fundamentals for the follow-up studies on developing signal 

processing for diagnosing faults on bearings and gears. 
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2.1 Introduction 

To gain an understanding of vibration mechanisms and signal characteristics, vibration 

models of roller bearings and helical gears are investigated with more attention to local 

defect induced responses. 

As the gear kinetic is simpler compared with that of rolling bearings which have planetary 

rotations, its dynamic forces can be understood easily. So this chapter starts with 

investigating gear signal models based on the dynamics of gear transmission. Then, it 

examines the models for bearings. These then make it easy to understand the vibrations of 

a planetary gearbox.  

In addition to the fact that bearings and gears are used together, both of them can share 

similar vibration responses to local defects in that they produce local impulsive forces. 

Dynamically, both of them exhibit a certain degree of nonlinearity due to time-varying 

contact deformation. Therefore, they are examined jointly in this study. 

2.2 Gear fault model based on dynamic analysis 

2.2.1 One-stage gearbox vibration model 

Commonly, the vibration system of a gear set can be represented as shown in Figure 2.1 

[46]. It consists of both rotational motions and translational motions of the pinion (drive) 

and the gear. According to Newton’s law, the vibration governing equations can be 

established as follows: 

the translational motion of the pinion, denoted with a subscript p : 

    0p p pb p pg p p g g p g pg p g p gp gm k y k r r y yy c r r y y              ................ (2.1) 

the rotational motion of the pinion p : 

    0p p pg p g g g p g p pg p g p gp p gI r k r r y y r c r r y y             ....................... (2.2) 

the translational motion of the driven gear denoted with a subscript g : 

    0pb pg p pg g g p gg g p g pg p g p gm k y k r r y y c r r y yy               ............... (2.3) 

the rotational motion of the driven gear g : 

    0p pg p g g gg g p gp g p pg p g p gI r k r r y y r c r r y y            ....................... (2.4) 
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where py  and gy  are the vertical displacement of the pinion and gear; pI  and gI indicate 

the moment of inertia of the pinion and gear; pm  and gm  are the mass of the pinion and 

gear; p  and g  are the angular displacement of the pinion and gear; pr  and gr denote 

the base circle radius of the pinion and gear; pbk  and gbk  are the stiffness of the pinion and 

gear; pgk  and pgc  denote the meshing stiffness and damping. 

These equations are typical nonlinear parametrically excited vibrations and difficult to find 

closed form solutions that can be based on for signal processing. 

py

gy

pr

gr

pbk

gbk

pgkpI pm

gI gm

,

,

pgc

p

g

 

Figure 2.1 Gear transmission model with rotational and translation motion coupling 

However, as shown in Equations (2.2) and (2.4), vibration responses in vertical and 

horizontal directions are mainly due to the tooth stiffness pgk , which is not only time-

varying but also coupled with both translational and rotational motions: py , gy , p  and 

g , as illustrated by Figure 2.2. This means that translational motions which usually are 

measurable on the gearbox case for condition motoring are resulted from a multiple 

coupling between the translation and the rotational motions. In particular, by representing 

the time-varying stiffness as ( )k k k t  , the vibration responses can be represented in the 
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form of multiple modulations [47], which can be also derived through the harmonics 

balance method (HBM):  

0

( ) [1 ( ]cos[2 ( )]
M

m m me m m

m

y t I a t) f t b t 


      .......................................................... (2.5) 

where ( )y t is the vibration response, ( )ma t  is the amplitude modulation and ( )mb t  is the 

phase modulation due to the local tooth faults. The model shows that vibration signals have 

the content of both amplitude modulation (AM) and phase modulation (PM) as a 

consequence of the combined outcomes of both tooth defects such as tooth breakage, tooth 

wear and manufacturing errors. 

Obviously, this model is useful in developing signal processing methods. However, it can 

be difficult to have effective and stable vibration features for obtaining a reliable 

diagnostic result due to the multiple modulation and noise effects. 

( )pgk t

py

pgc

p

g

py

gy
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g

py

gy

X

X

X

X

X

X

X
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Figure 2.2 Inter-coupling between different motions 

2.2.2 Simulated one-stage gearbox vibration signals  

The faults localised on one tooth or a few teeth such as cracks and spalls produce 

modulation effects during the engagement of the fault teeth. Consequently, a large number 

of sidebands of the tooth-mesh frequency and its harmonics in the spectrum is generated 

and spread over a wide range, which is spaced by the rotation frequency of the fault gear 

and characterised by low amplitudes [48]. 
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Figure 2.3 Simulated signals and their spectra 

A simulated signal is synthesised based on the characteristics of gear vibration signals [49] 

according to Equation (2.6). 

1 2 3( ) ( ) ( ) ( )s t s t s t s t    ................................................................................................ (2.6) 

where )(1 ts is the modulation component that simulates the modulation between gear mesh 

frequency 1 1* 1450m rf Z f Hz  and shaft rotational frequency 25rf Hz , specifically 

expressed as: 

1 1( ) [1 cos(2 )]cos(2 )r ms t f t f t     ................................................................................... (2.7) 

where the gear tooth number 1 58Z  . As shown in Figure 2.3(b), it has very high 

amplitude, showing that it is the dominant part of vibration signals. Along with this signal 

there are also two small impulsive components 2 ( )s t  and 3( )s t , which are generated by 

Equations (2.8) and (2.9), respectively, to represent possible impulses from meshing 

stiffness impacts due to local tooth damages of different amplitudes [50].  
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0

3
1000( )

2 0 1 0
0

( ) 0.2 ( ) cos[(2 ( ))
t nT

n

s t h t nT e f t nT
  



         ...................................... (2.8) 

0

3
1000( )

3 0 2 0
0

( ) 0.2 ( ) cos[(2 ( ))
t nT

n

s t h t nT e f t nT
  



         ...................................... (2.9) 

where 1 30 750rf f Hz  , 2 40 1000rf f Hz  , T  is the period of shaft rotation, 0  is the 

start time of the impulse and ( )h t  denotes the step function. As shown in Figure 2.3(a), 

these components usually have very small amplitudes when the tooth damage is incipient 

but show clear spikes according to their periods. 

However, when these two portions are added together, the repetitive spikes are masked by 

the large modulation component and are difficult to detect either in the waveform of Figure 

2.3(c) or in its spectrum of Figure 2.3(d).  

2.2.3 Two-stage gearbox vibration model 

Based on modal response mechanisms, the gearbox case responses were also considered as 

two lumped systems, representing two arbitrary case positions. Thereby it allows the model 

to be evaluated using measured vibrations at the gearbox case [51]. 

Following the same procedure used in developing the model for the one-stage gearbox, the 

vibration responses of a two stage gearbox system can be obtained as:  

The rotational motion of the motor rotor can be expressed as: 

1 1 1 2 1 1 2( ) ( )m mI k c M          ...................................................................... (2.10) 

The rotational motion of the drive gear 1( )Z  in first stage is as: 

1 2 1 1 2 1 1 2 1 1 1 2 1 3 1 1

1 1 1 2 1 3 1 1

( ) ( ) ( )

( ) 0

p p z p g p g

p z p g p g

I k c r k r r y y

r c r r y y

      

 

       

    
 ....................... (2.11) 

The rotational motion of the driven gear 2( )Z  in the first stage is given by: 

1 3 2 3 4 2 3 4 1 1 1 2 1 3 1 1

1 1 1 2 1 3 1 1

( ) ( ) ( )

( ) 0

g g z p g p g

g z p g p g

I k c r k r r y y

r c r r y y

      

 

       

    
 ..................... (2.12) 
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Figure 2.4 The dynamic model of the motor-gearbox and loader system 

The rotation of the drive gear 3( )Z  in the second stage is given by: 

2 4 2 3 4 2 3 4 2 2 2 4 2 5 2 2

2 2 2 4 2 5 2 2

( ) ( ) ( )

( ) 0

p p z p g p g

p z p g p g

I k c r k r r y y

r c r r y y

      

 

       

    
 ........................ (2.13) 

The rotation of the driven gear 4( )Z  in the second stage is given by: 
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2 5 3 5 6 3 5 6 2 2 2 4 2 5 2 2

2 2 2 4 2 5 2 2

( ) ( ) ( )

( ) 0

g g z p g p g

g z p g p g

I k c r k r r y y

r c r r y y

      

 

       

    
 ......................... (2.14) 

The rotation of the loading rotor (output shaft) is given by: 

6 3 5 6 3 5 6( ) ( )l lI k c M          ........................................................................... (2.15) 

The equation that governs the translational motion of the drive gear 1( )Z  in the first gear 

pair is given by: 

1 1 1 1 1 1 1 1 1 1 2 1 3 1 1

1 1 2 1 3 1 1

( ) ( ) ( )

( ) 0

p p p p c p p c z p g p g

z p g p g

m y k y y c y y k r r y y

c r r y y

 

 

       

    
 ...................... (2.16) 

The translational motion of the driven gear 2( )Z  in the first stage is given by: 

1 1 1 1 2 1 1 2 1 1 2 1 3 1 1

1 1 2 1 3 1 1

( ) ( ) ( )

( ) 0

g g g g c g g c z p g p g

z p g p g

m y k y y c y y k r r y y s

c r r y y

 

 

       

    
 .................... (2.17) 

The translational motion of the drive gear 3( )Z  in the second stage is given by: 

1 2 2 2 2 1 2 2 2 2 4 2 5 2 2

2 2 4 2 5 2 2

( ) ( ) ( )

( ) 0

p p p p c p p c z p g p g

z p g p g

m y k y y c y y k r r y y

c r r y y

 

 

       

    
 ................ (2.18) 

The translational motion of the driven gear 4( )Z  in the second stage is given by: 

2 2 2 2 2 2 2 2 1 2 4 2 5 2 2

2 2 4 2 4 2 2

( ) ( ) ( )

( ) 0

g g g g c g g c z p g p g

z p g p g

m y k y y c y y k r r y y

c r r y y

 

 

       

    
 ................ (2.19) 

For the motion of case 1 the governing equation is: 

1 1 1 1 1 1 1 1 1 1 1 1( ) ( ) 0c c c c c c p p c p p cm y k y c y k y y c y y        ......................................... (2.20) 

For the motion of case 2 the governing equation is: 

2 2 2 2 2 2 1 1 2 2 2 2( ) ( ) 0c c c c c c g g c g g cm y k y c y k y y c y y        .................................... (2.21) 

where: 

mI  = moment of inertia for electric motor; 

lI = moment of inertia for the load system; 

1pI = moment of inertia of drive gear one (pinion one) in the first stage; 

1gI = moment of inertia of driven gear in the first stage; 
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2pI = moment of inertia of drive gear (pinion two) in the second stage; 

2gI = moment of inertia of driven gear in the second stage; 

1 2,F F = gearing stiffness forces; 

1 2,t tF F = gearing damping forces; 

mM = input motor torque; 

1 1, tM M = internal moments and coupling damping in first shaft; 

2 2, tM M = internal moments and coupling damping in second shaft; 

3 3, tM M = internal moments and coupling damping in third shaft; 

1 = angular displacement of induction motor; 

2 3,  = the angular displacements of drive gear 1Z  and driven gear 2Z in the first stage 

respectively; 

4 5,  = the angular displacements of gear one (pinion) and gear two in the second stage 

respectively; 

6 = angular displacement of load system; 

1 1,p gr r = base circle radius of the drive gear and driven gear in the first stage; 

2 2,p gr r = base circle radius of the drive gear and driven gear in the second stage; 

,p gy y =vertical displacement of the drive gear and the driven gear in the first stage; 

1 2,c cy y = vertical displacement of the upper and lower casings; 

1 1,p gm m = mass of the drive and the driven in the first stage; 

2 2,p gm m = mass of the drive and the driven in the second stage; 

2 2,c cm m = mass of upper and lower casing; 

pc = first stage pinion shaft damping; 

gc = first stage gear shaft damping;  

1c = shaft one damping; 2c = shaft two damping; 3c = shaft three damping;  
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1zc = first stage gearing damping; 2zc = second stage gearing damping; 

1cc = upper casing support damping; 2cc = lower casing support damping;  

pk = first stage pinion shaft stiffness; gk = first stage gear shaft stiffness;  

1k = shaft one stiffness (rotational stiffness);  

2k = shaft two stiffness;  

3k = shaft three stiffness and coupling stiffness; 

1zk = first stage gearing stiffness (meshing stiffness); 

2zk = second stage gearing stiffness (meshing stiffness); 

1ck = upper casing support stiffness; 

2ck = lower gearing support stiffness. 

Similar to the case of the one-stage gear system, the vibration responses of the two-stage 

gearbox also consist of both translational and rotational motions because of the coupling 

effect. Moreover, the coupling can also occur between the two stages and the overall 

vibrations will be a combination of different components between the two stages. 

2.2.4 Simulated gearbox vibration signals 

To understand the vibration components arising from a multi-stage gearbox, a numerical 

study was based on the model expressed by Equations (2.10)-(2.21). Figure 2.5 presents 

the time series of signals and their corresponding spectra. They were obtained based on the 

two-stage gearbox shown in Figure 2.4 and parameters s in Section 4.3, which is solved 

numerically when the two stiffness functions are in the form of sinusoidal excitations, 

which is a basic component to construct a more realistic stiffness function such as a 

rectangular one.  
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Figure 2.5 Simulated vibration signal of a two-stage gearbox 
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From the vibration spectra, it can be seen that the signals are composed of not only the first 

stage mesh frequency component and its harmonics and the component of the second stage 

mesh frequency and its harmonics, but also a high density of components resulting from a 

complicated combination of the two mesh frequency components as a consequence of the 

mutual coupling between the two basic components of the two-stage meshing processes. 

As an example, the spectral peak at 1 27m mf f  is resulted from a modulation between the 

fundamental components of the first stage with the 7th harmonics of the second stage, 

showing the coupling between the two stages. 
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Figure 2.6 Time series of simulated vibration responses of bearing fault and gear fault 

It shows that the frequency contents are rich and complicated even if only a sinusoidal 

stiffness is applied to the system. Therefore, it is necessary to be very careful in identifying 



CHAPTER 2 

49 

the correct components for diagnostics when analysing signals from real measurements 

where the stiffness excitation is not only a combination of multiple sinusoidal waveforms 

but also can be affected by manufacturing errors and noises.  

The signal model can be expressed as: 

1 2
1 0 2 0

( ) cos(2 ) cos(2 )
M N

m m
m m

x t f t f t 
 

    ...................................................................... (2.22) 

where 1mf  and 2mf  denote the mesh frequency of the first and the second stages; M  and 

N  indicate the harmonic number of the first and the second stages, respectively. 
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Figure 2.7 Filtered vibration responses of bearing fault and gear fault 
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In this section, three cases of combined fault are simulated based on the two-stage gear 

vibration model described in Section 2.2.3. The first one is a bearing outer race defect with 

sinusoidal stiffness of the 1st stage and constant stiffness of the 2nd stage. The second one is 

a bearing inner race defect with sinusoidal stiffness of the 1st stage and constant stiffness of 

the 2nd stage. The third one is a combined fault of bearing inner race defect and gear defect 

with time-varying stiffness of both stages. From Figure 2.11, it can be seen that the fault 

components are submerged in the high amplitude meshing frequencies. To view the fault 

components clearly, a high-pass filter is applied to reduce the meshing frequencies and the 

results are given in Figure 2.7. It is clear that the signals contain a series of impulses. In the 

signal processing algorithms, it is critical to extract these impulses for reliable fault 

detection and diagnosis. 

Figure 2.8 gives the spectra of the simulated signals around the mesh frequency of the first 

stage. It can be seen that the bearing fault frequency is modulated on the gear mesh 

frequency and its harmonics. The sidebands of bearing fault frequency at cage frequency 

still exist. 
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Figure 2.8 Spectra of simulated vibration responses of bearing fault and gear fault 
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2.3 Bearing fault model based on kinetic analysis 

2.3.1 Bearing kinematics 

A standard rolling bearing has four fundamental components: the outer race, the inner race, 

rolling elements and the cage. The rolling elements are guided in the case that ensures 

uniform intervals between elements and prevents mutual contact. Reference [52] described 

the bearing kinematics. Figure 2.9 shows a schematic graph of a rolling element bearing 

and its typical defects, which can be generated by fatigue, wear and poor installation. Due 

to the planetary motion of the elements, the rotational motions in the bearing are slightly 

complicated, which will lead to at least four characteristic motions due to defects occurring 

in the four components. 

To derive the fault characteristics of bearing vibration responses, four conditions are 

assumed in the bearing operating: (1) all rollers have the same diameters; (2) the contact 

between the rollers, inner race and outer race are in pure rolling contact; (3) no slip occurs 

between the shaft and the bearing inner race.  

From the geometry, assuming a constant operating contact angle  , the pitch circle 

diameter of the bearing cD  can be approximated by the inner race diameter iD  and outer 

race diameter oD  as: 

2

i o
c

D D
D


  ............................................................................................................. (2.23) 

 

Figure 2.9 Schematic of a rolling element bearing 
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Contact Angle φ 
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Figure 2.10 Contact angle of rolling element bearing 

The race diameters can be expressed with the pitch diameter, the ball diameter and the 

contact angle as: 

cos

cos

i c b

o c b

D D D

D D D





 

 
 ..................................................................................................... (2.24) 

The circumferential velocity of the bearing components can be derived in terms of the 

angular velocity (rad/s) and radius (m). The inner race circumferential velocity can be 

calculated by: 

2

i
i i

D
V w  ................................................................................................................... (2.25) 

and the outer race velocity can be calculated by: 

2

o
o o

D
V w  ................................................................................................................. (2.26) 

The velocity of the cage cV  is the average of the inner race velocity and the outer race 

velocity when no slip occurs. 

2

i o
c

V V
V


  ................................................................................................................ (2.27) 

Substituting Equations (2.24)-(2.26) into Equation (2.27), cage velocity cV  becomes: 

( cos ) ( cos )

4 4

i c b o c b
c

w D D w D D
V

  
   ................................................................. (2.28) 

Conversion of the circumferential velocity from m/s to angular frequency revolutions/sec 

(Hz) by dividing through by cD  and rearranging to give the cage frequency in Hz rather 

than velocity gives: 
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(1 cos ) (1 cos )

2 2

b b
in ot

c c
c

D D
f f

D D
f

  

   .................................................................... (2.29) 

Equation (2.29) is the theoretical cage or fundamental train frequency (FTF) for rolling 

element bearings. In many situations, one of the raceway will be stationary, the most 

common being the outer race. In this case, Equation (2.29) can be further simplified to the 

familiar form: 

(1 cos )

2

b
in

c
c

D
f

D
f



  ................................................................................................. (2.30) 

The frequency of rotation of the rolling elements with respect to the inner race can likewise 

be derived by 

ri c inf f f   ............................................................................................................... (2.31) 

which, by substitution of Equation (2.29), becomes 

(1 cos ) (1 cos )

2 2

b b
ot in

c c
ri

D D
f f

D D
f

  

   ................................................................... (2.32) 

The ball pass frequency on the inner race can be expressed by: 

( )(1 cos )

2

b
r ot in

c
i

D
N f f

D
f

 

  ................................................................................... (2.33) 

When the outer race is stationary, the ball pass inner race frequency becomes 

(1 cos )

2

b
r in

c
i

D
N f

D
f

 

  ........................................................................................... (2.34) 

The frequency of rotation of rolling elements with respect to the outer race can be 

calculated by 

ro ot cf f f   .............................................................................................................. (2.35) 

Substituting Equation (2.29) into Equation (2.35), it becomes 

(1 cos ) (1 cos )

2 2

b b
ot in

c c
ro

D D
f f

D D
f

  

   ................................................................... (2.36) 
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The ball pass frequency on the outer race can be obtained by multiplying the roller number 

rN : 

( )(1 cos )

2

b
r ot in

c
o

D
N f f

D
f

 

  ................................................................................. (2.37) 

When the outer race is stationary, the outer race fault frequency can be expressed as: 

(1 cos )

2

b
r in

c
o

D
N f

D
f

 

  ........................................................................................... (2.38) 

The rotating frequency of the rollers about their own axes can also be derived. The 

frequency of rotation, assuming no slip, is given by the rotating frequency of the cage with 

respect to the inner race multiplied by the diameter ratio of the inner race to the ball 

diameter 

* i
bs ri

b

D
f f

D
  ............................................................................................................. (2.39) 

Substitutings Equations (2.24) and (2.32) into Equation (2.39), the roller fault frequency 

can be expressed as:  

2(1 ( cos ) )
2

ot in c b
bs

b c

f f D D
f

D D



   .............................................................................. (2.40) 

When the outer race is stationary, the roller race fault frequency can be expressed as: 

2(1 ( cos ) )
2

in c b
bs

b c

f D D
f

D D
    ................................................................................... (2.41) 

Equations (2.29), (2.33), (2.37), and (2.40) give the general forms of bearing fault 

frequencies of the cage, inner race, outer race, and rollers, respectively. Equations (2.30), 

(2.33), (2.38) and (2.41) show the bearing fault frequencies when the outer race is 

stationary. 

2.3.2 Bearing vibration signal models 

The vibration signature of a defective rolling element bearing is typified by amplitude 

modulations [53]. In a bearing system, the carrier signal will likely be a combination of the 

resonant frequencies of the bearing and probably of the mechanical system associated with 
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it. The vibration signal from a rolling element bearing with a local defect can hence be 

represented as [53]: 

( ) ( ) ( ) ( ) ( ) ( )f q bs sx t x t x t x t x t n t    ............................................................................. (2.42) 

where ( )fx t  are the periodic impulses produced by the defect, ( )qx t  is the modulation 

effect due to the non-uniform load distribution and ( )bsx t  is the bearing-induced vibration 

determined by the bearing structural dynamics, ( )sx t  is the machinery-induced vibration 

determined by the machine structure and related components, and ( )n t  is the noise which 

is encountered inevitably in any measurement system. This shows that the fault signatures 

of a local bearing defect comprise modulation effects between fault frequencies, load 

distribution and structural resonances. Moreover, the signal is contaminated by noise and 

interference, and this is especially relevant when the fault signature is weak during the 

early stages of fault development. Therefore, to extract fault signatures effectively, the 

signal must be both denoised and demodulated.  

( )fx t  in Equation (2.42) represents a series of impulse responses to local bearing defects 

such as a small dent on deferent components of a bearing, with a repetition frequency 

which reflects the contact of the bearing fault with another part of the bearing (e.g. an area 

of fatigue damage on a raceway and the periodic interaction of the rolling elements with 

this); this is called the defect frequency of the bearing. For a typical rolling element 

bearing there are four possible characteristic defect frequencies and these are determined 

by the bearing dimensions, the shaft speed and the defect location, in addition to an 

installation-dependent feature called the contact angle [54]. The repetition frequency for an 

outer race defect is denoted of ; for an inner race defect is if ; for a rolling element defect 

is bf ; and for a cage defect is cf . The repetition frequency can be modulated by loaded 

zone effects on rotating elements ( )qx t , as shown in Figure 2.11. For an inner race defect, 

the modulating frequency is the shaft rotational frequency rf , but for a rolling element 

defect the modulating frequency mainly includes the cage frequency cf . The theoretical 

characteristic frequencies of a rolling element bearing can be calculated by Equations 

(2.43)-(2.46) [54]. 
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Figure 2.11 Simulated fault data and spectra of a rolling element bearing with a 

localised defect on the (a) outer race, (b) inner race (c) rolling element, and (d) cage 

Outer race fault frequency: 
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Inner race fault frequency: 
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Ball fault frequency: 

2(1 ( cos ) )
2

c b
b r

r c

D D
f f

D D
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Cage fault frequency (often called the fundamental train frequency): 

1
(1 cos )

2

b
cage r

c

D
f f

D
   ............................................................................................ (2.46) 

where cD  is the pitch circle diameter, bD  is the roller diameter,   is the contact angle as 

shown in Figure 2.10, and rN  is the number of balls (or rollers).  
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From the simulated signal, it can be seen clearly that the bearing signal includes periodic 

impulses and exhibits amplitude modulation features. The modulation could be induced by 

the transmission path and load zone effect. 

2.4 Combination of gear and bearing models based on planetary 

gearbox vibration responses 

In this section, a combined gear and bearing model is proposed to understand the 

interaction of the two components.  

2.4.1 Planetary gearbox vibration characteristics 

A planetary gearbox is composed of a ring gear, a sun gear and multiple planet gears. 

Usually, the ring gear is stationary, a sun gear rotates around a fixed centre, and planet 

gears not only spin around their own centres but also revolve around the centre of the sun 

gear. The planet gears mesh simultaneously with both the sun gear and the ring gear. Due 

to these complicated gear motions, the vibration signals generated by planetary gearboxes 

are more complicated than those by fixed shaft gearboxes. In addition, the planet phasing 

relationship, which is dependent on the number of planets, planet position angles, and the 

number of teeth of each gear, also adds complexity to vibration signals. In this section, the 

planetary gearbox vibration signal models will be introduced. The gear damage could 

produce the amplitude modulation and frequency modulation (AM-FM) effects to the gear 

mesh vibration at corresponding fault characteristic frequencies [55].  

Based on the theoretical analysis in [56], in steady working condition such as constant 

running load and speed, the vibration perceived by a sensor on the stationary ring can be 

represented with mutual modulations of both AM and FM phenomena. For a local fault, 

such as the crack and pitting on one tooth of the sun gear, the signal model for the 1st 

sinusoidal component can be expressed as: 

     

 

( ) [1 cos 2 ][1 cos 2 ][1 cos 2 ]

cos[2 sin 2 ]

rs rc sf

m sf

f t f t f t A f t

f t B f t

   

   

    

   
 .................................... (2.47) 

on the planet gear 

     

 

( ) [1 cos 2 ][1 cos 2 ][1 cos 2 ]

cos[2 sin 2 ]

rc rc pf

m pf

f t f t f t A f t

f t B f t

   

   

    

   
 .................................... (2.48) 
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and on the ring gear 

   

 

( ) [1 cos 2 ][1 cos 2 ]

cos[2 sin 2 ]

rf rc

m rf

f t A f t f t

f t B f t

  

   

   

   
 ............................................................. (2.49) 

where sff , pff  and rff  is the fault characteristic frequency of the sun gear, planet gear 

and ring gear respectively. rcf  and rsf  are the rotating frequency of the carrier and sun 

gear. mf  is the gear mesh frequency.  ,   and   are the initial phases of AM and FM 

respectively. 

Therefore, consider the AM-FM effects with the high orders of fault gear characteristic 

frequency xfnf  as the modulating frequency and with the higher orders of mesh frequency 

mkf  as the signal carrier frequency and rxf  as the corresponding component rotating 

frequency, the vibration spectral peaks will appear at the frequency locations of 

m xf rckf nf f  and m rx xf rckf f nf f    ( , 1,2,3 )k n   in the Fourier spectrum. From the 

analysis of vibration spectra, the gear fault can be detected and located by monitoring the 

presence of magnitude increase of spectral peaks at the above mentioned frequency 

locations. 

2.4.2 Characteristic frequencies for gear fault detection 

According to reference [56], the rotational frequency of the carrier can be calculated as 

s
rc rs

r s

Z
f f

Z Z



 ......................................................................................................... (2.50) 

the planet gear frequency as 

 
 

p r s

rp rs
r s p

Z Z Z
f f

Z Z Z





 .................................................................................................. (2.51) 

and the mesh frequency as 

  r s
m rs rc s rs r rc

r s

Z Z
f f f Z f Z f

Z Z
   


, ...................................................................... (2.52) 

where rsf  is the sun gear rotating speed; rZ , pZ  and sZ  denote the number of teeth for the 

ring, planet and sun gears, respectively. 
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As shown in many previous studies [55][57], detection and diagnosis can be carried out by 

examining the changes of characteristic frequencies around the mesh frequency mf  and its 

harmonics. Considering that there are K  number of planetary gears moving with the 

carrier, characteristic frequencies around the mesh frequency can be calculated [58][59] for 

different local faults occurring on the sun gear 

 m
sf rs rc

s

f
f K f f

Z
    .............................................................................................. (2.53) 

on the planet gear 

 2 2m
pf rp rc

p

f
f f f

Z
    ............................................................................................ (2.54) 

and on the ring gear 

m
rf rc

r

f
f Kf

Z
  . .......................................................................................................... (2.55) 

However, as shown in [59][60], only some of these expected sidebands will be apparent in 

the vibration spectrum when a planetary gearbox has faults due to the effects of 

constructive superposition of the vibration waves from the three gear sets, whereas other 

sidebands are hard to see because of the destructive effect of the superposition, and hence 

the latter have been largely neglected by previous studies when developing methods for 

fault diagnosis. 

2.4.3 Characteristic frequencies for bearing fault detection 

A ball bearing consists of an inner race, an outer race, several balls and a cage, which holds 

the balls in a given relative position. Race surface fatigue results in the appearance of 

spalls on the inner race, outer race or balls. If one of the races has a spall, it will almost 

periodically impact with the balls. The fault signature can be represented by successive 

impulses with a repetition rate depending on the faulty component, geometric dimensions 

and the rotational speed. The period between impulses is different for all the listed 

elements and depends on the geometry of the bearing, the rotational speed and the load 

angle. For a fixed outer race bearing, the theoretical characteristic fault frequencies can be 

calculated using Equations (2.43)-(2.46). 

While the sensor is mounted on the gearbox housing, which is connected to or fastened to 

the ring gear directly in most situations, the bearing damage induced vibration has two 
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main paths to go from its source to the sensor through solid mechanical components and 

their contacts. Through the first path, the vibration signal propagates from its origin to the 

gearbox casing, and then reaches the sensor. Whereas through the second path, the 

vibration signal follows a longer path, from its origin to the shaft firstly, then from the 

shaft go through the sun gear, planet gear and ring gear, after that from the ring gear to the 

gearbox casing, and finally to the sensor. Therefore, the vibration signal will be amplitude 

modulated by the sun gear rotating frequency and carrier rotating frequency. Because when 

the vibration transmitted through the planetary gear, it is also modulated by the gear mesh 

frequency. Therefore, the vibration signal can be expressed as: 

   

1

( ) [1 cos 2 ]cos[2 ] [1 cos 2 ]cos[2 ]

cos(2 )cos[2 ]

rs bx rc bx

N

m bx
n

f t f t f t f t f t

nf t f t


         

   
 .......................... (2.56) 

where bxf  is the characteristic frequency of bearing, and mf  denotes the planetary gear 

mesh frequency. 

2.5 Summary 

In this chapter, vibration signal characteristics for bearing faults, gear faults and combined 

faults are studied. All of these signals can present periodic, impulsive and modulating 

content due to their kinetic and dynamic mechanisms, which is the important basis of 

effective signal processing and feature extraction for accurate fault detection and diagnosis. 
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Chapter 3  
Fundamentals of key signal processing techniques 

This chapter provides a more in-depth understanding of key signal processing techniques 

which are potentially effective in noise reduction and impulsive signature enhancement. In 

particular, ALE, TSA, wavelet analysis, TFR based kurtogram and bispectrum analysis are 

focused on as they have been shown to have good performances for impulsive feature 

enhancement by active investigations in recent years. 
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3.1 Introduction 

Based on the types of data collected or the types of sensors used for data acquisition, there 

are a variety of technologies that can be used for making maintenance decisions in 

condition monitoring systems, such as visual inspection, trend monitoring, vibration-based 

condition monitoring, and acoustic-based condition monitoring. Since mechanical systems 

or machines account for the majority of plant equipment, vibration monitoring is generally 

the key technique in most systems. Sometimes, all of these technologies are employed in a 

comprehensive system in order to make accurate maintenance decision. 

Generally, there is considerable noise in the collected vibration signals, not only from 

measurement but also from the machine’s normal operation, which would influence the 

decision making of fault detection and diagnosis. Especially in the early fault stage, weak 

fault signals are often submerged in loud background noise. To attain reliable condition 

monitoring and fault diagnosis results, therefore, noise reduction pre-processing is a 

critical subject in signal processing. In order to improve the signal-to-noise ratio, numerous 

techniques have been developed and improved.  

In this chapter, the fundamentals of such key techniques are re-examined in more depth 

regarding their operating mechanisms and performances in achieving noise reduction and 

impulse signal enhancements. This will pave the ways for developing more advanced 

techniques for achieving further noise reduction and signal enhancement and hence reliable 

diagnostic results. 

3.2 Adaptive line enhancer 

The ALE is a degenerated form of adaptive noise cancellation (ANC), consisting of a 

single sensor and delay z  to produce a delayed version input signal, which de-correlates 

the noise while leaving the target component correlated. Ideally, the output of the adaptive 

filter in the ALE is an estimate of the noise-free input signal. Hence, the ALE is capable of 

separating the periodic and stochastic components in a signal [61][62][63]. 

In 1979 the ALE was introduced as a method for detecting a periodic signal in an 

incoherent background or conversely of removing periodic interference from a broad-band 

signal of interest [64]. This technique can be used with any of the adaptive filters classified 

to date and uses a delay in the input signal to filter out the unnecessary part in it and thus 
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get the desired response. Naoto Sasaoka et al. applied ALE to reduce the sinusoidal noise 

in noisy speech signals in 2005 [65].  

In 1996 and 1998, to reduce the background noise level of rotating and reciprocating 

machinery, S. K. Lee and P. R. White exploited a two-stage ALE filter structure in series. 

The resulting enhanced signals are analysed in the time-frequency domain to obtain 

simultaneous spectral and temporal information. The techniques developed are applied to 

the diagnosis of faults within an internal combustion engine and to data from an industrial 

gearbox [66][67]. 

In 2006, S. K. Lee and J. S. Lee applied ALE to enhance the impulsive components in 

gearbox vibration signals and then analyse them by using time-frequency representation 

[68]. 

In 2012, J. R. Mohammed et al. presented one noise reduction system based on two stages 

of operation, with the first stage based on the ALE filters and the second stage on NLMS 

(Normalised Least Mean Square) filter. The first stage reduces the sinusoidal noise from 

the input signal and the second stage reduces the wideband noise [69]. 

According to Widrow [70], ALE is an adaptive self-tuning filter capable of separating the 

periodic and stochastic components in a signal. As shown in Figure 3.1, the ALE simply uses 

a single sensor and is therefore easier and more cost-effective to implement in condition 

monitoring practice.  

 

Figure 3.1 Block diagram of adaptive line enhancer 

In this case, the reference signal is obtained by delaying the input signal by a certain number of 

samples  . The result is that any stationary input components which are predictable over the 

delay appear at the filter output ( )py n , whilst the nonstationary output ( )fy n  contains those 

components which are unpredictable over the delay. 
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The ALE becomes an interesting application in noise reduction because of its simplicity 

and ease of implementation. However, to obtain the best performance in its computational 

process, the optimal approach is to execute ALE on a better convergence rate of adaptive 

algorithm with a less complex structure.  

The most widely used adaptive filtering technique is a version of the LMS algorithm, 

initially proposed by Widrow and Hoff. The LMS is based on the steepest descent method, 

a gradient search technique to determine filter coefficients that minimise the mean square 

prediction of a transversal filter. The NLMS converges faster than the conventional LMS 

because it employs a variable step size parameter aimed at minimising the instantaneous 

output ( )fy n  [72] [73]. NLMS algorithm can be summarised as shown below. 

The output of adaptive filter is 

( ) ( ) ( )py n n n T
x w . ..................................................................................................... (3.1) 

while ( )x n  and ( )w n  are given in Equations (3.2) and (3.3) 

( ) [ ( ) ( 1)]n x n x n L   Τ
x  ........................................................................................ (3.2) 

0 1( ) [ ( ) ( )]Ln w n w n Τ
w  ........................................................................................ (3.3) 

The adaptive coefficients are updated by the following formula  

2
( ) ( 1) ( ) ( )

( )
apn n n y n

n




  


w w x

x
 ................................................................... (3.4) 

( ) ( ) ( )ap py n d n y n   ................................................................................................ (3.5) 

where the non-stationary output signal ( )apy n  is given by Equation (3.5),   is the step 

size parameter which controls the convergence speed and the stability of the filter and   is 

a small constant in order to prevent division by zero in case no input signal is present. 

3.3 Wavelet analysis 

Wavelet transforms are effective in processing non-stationary vibration signals and have 

been successfully used for revealing the inherent information for fault detection and 

diagnosis. The applications of the wavelet transform in machine fault diagnosis include the 

following main arears: the time-frequency analysis of signals, fault feature extraction, the 
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denoising and extraction of weak signals, the compression of vibration signals and system 

identification [74]-[78].  

Wavelet transforms are capable of providing both time-domain and frequency-domain 

information simultaneously. Similar to a wavelet function, the impulsive feature 

components in vibration signals have local energy distributions in both the time domain 

and the frequency domain. Wavelet functions can be used for the detection of impulsive 

feature components because they have similar time-frequency structures. However, there 

are different types of wavelet functions each of which have different time-frequency 

structures; it is obvious that using an optimal wavelet function, whose time-frequency 

structure best matches that of the impulsive component, can achieve the best performance 

in impulsive component detection. To find such an optimal wavelet, many algorithms have 

already been proposed.  

In 2000, J. Lin and L. S. Qu used the wavelet entropy as a rule to optimise the parameters 

of the wavelet function [76]. The vibration signals from the rolling bearing and the gearbox 

were denoised based on the Morlet wavelet, which was optimised by minimum wavelet 

entropy. The results of the application in rolling bearing diagnosis and gearbox diagnosis 

are satisfactory. 

In 2003, J. Lin and M. J. Zuo introduced a Morlet wavelet parameters optimisation method 

based on the kurtosis maximisation principle [79]. The adaptive wavelet filter is found to 

be very effective in the detection of symptoms from vibration signals of a gearbox with 

early fatigue tooth crack. 

In 2009, W. S. Su et al. optimised Morlet wavelet parameters by genetic algorithm for 

rolling element bearing fault diagnosis [80]. In this paper, to eliminate the frequency 

associated with interferential vibrations, the bearing vibration signal is filtered with a band-

pass filter determined by a Morlet wavelet function whose parameters are optimised by 

genetic algorithm. 

In 2010, W. He, Z. N. Jiang and Q. Qin developed a joint adaptive wavelet filter and 

morphological signal processing method for weak mechanical impulse extraction [81]. The 

optimisation algorithm of the proper wavelet centre frequency and bandwidth of filter is 

based on differential evolution (DE). This method was applied in bearing vibration signal 

analysis combined with morphological signal processing (MSP). 
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In 2011, W.Y. Liu et al. proposed a hybrid time-frequency method based on the improved 

Morlet wavelet and auto terms window [82]. The shape parameters of Morlet and the 

appropriate scale parameter for continuous wavelet transformation (CWT) are optimised 

using the cross validation method (CVM) and the minimum Shannon entropy method. The 

method was utilised in the gearbox vibration impulse detection for fault diagnosis and the 

results show that the gearbox fault feature is much clearer than the original signal. 

In 2011, Y. H. Jiang et al. put forward another denoising method based on adaptive Morlet 

wavelet and singular value decomposition (SVD) [83]. Modified Shannon wavelet entropy 

is used to optimise central frequency and bandwidth parameter of the Morlet wavelet in 

order to achieve optimal match with the impulsive components. Then the scale periodic 

exponential (SPE) spectrum based on SVD is utilized to select the appropriate transform 

scale. 

There are two kinds of wavelets: real analytic wavelet and complex analytic wavelet. The 

complex analytic wavelets can separate the amplitude and phase component and be used to 

measure the time evolution of the frequency transitions. The real analytic wavelets can be 

used to detect the impulsive components. Previous studies [80]-[83] have shown the 

Morlet wavelet gives superior results in detecting impulse components in different types of 

vibration signals. Therefore, the real-part of the complex Morlet wavelet is also used in this 

study for optimal detection and diagnosis.  

The real Morlet wavelet is defined in the time domain as a sinusoidal wave multiplied by a 

Gaussian function [83]  

   
2

0.5
( ) exp expb c

b

t
t f j2 f t

f
  

  
  

 
 

 ........................................................................ (3.6) 

where bf  is the bandwidth parameter and cf  is the wavelet centre frequency. A feature of 

this wavelet is that its Fourier spectrum is a Gaussian function:  

  22( ) exp b cf f f f     ....................................................................................... (3.7) 

It is obvious from Equation (3.7) that the shape of mother wavelet is controlled by bf  and 

cf . Based on understandings from previous studies, Morlet wavelet parameters have to be 

optimised to obtain the best detection of impulse components. Entropy technique based 

optimisation has been applied in adaptive machine fault detection and diagnosis and shows 
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promising results in many industrial fields, such as system parameter recognition, structure 

optimisation, device operation-state detection and fault diagnosis [84]-[88].  

3.4 Time synchronous average 

One of the most powerful algorithmic tools for vibration analysis is the TSA. TSA 

resamples the vibration data synchronously with a particular shaft in a complicated 

drivetrain, and is the basis of numerous gear and shaft condition indicator algorithms.  

In essence, TSA is a signal processing technique that extracts periodic waveforms from 

noisy data based on a scheme of signal phase alignment, as reviewed in Section 1.3.1. 

Thus, TSA is well suited for multistage gearbox analysis, where it allows the vibration 

signature of the gear under analysis to be separated from other gears and noise sources in 

the gearbox that are not synchronous with that gear. Additionally, variations in shaft speed 

can be corrected, which results in the spreading of spectral energy into an adjacent gear 

mesh bin. In order to do this, a signal phase-locked with the angular position of a shaft 

within the system is needed.  

This phase information can be provided through an n-revolution tachometer signal (such as 

a Hall sensor or optical encoder, where the time at which the tachometer signal crosses 

from low to high is called the zero crossing) or through the demodulation of gear mesh 

signatures [89]. If n is 1 for the shaft under analysis, a balance solution can be obtained. If 

n is greater than one, or the shaft/gear under analysis is not the shaft generating the 

tachometer signal, then no balance solution is available (phase relative to the imbalance 

vector is ambiguous). 

In general, TSA enhances signals by signal phase alignments. Signal components with the 

same phase as the tachometer signal, which includes the integer multiples of the shaft 

frequency from the tachometer signal, will be enhanced whereas those out-phase 

components of the tachometer signal, which includes any components of fractional orders 

of the shaft frequency, are suppressed. This shows that the use of phase information is very 

effective in obtaining a signal with minimal noise contamination.  

However, to achieve reliably TSA of vibration signals, additional tachometer signals must 

be collected simultaneously, which not only requires more hardware investment but also it 

is often difficult, for example, to install a sensor close to the rotating system. In addition, 

TSA is probably not very effective in analysing bearing signals as the characteristic 
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frequencies of bearing faults, which have been discussed in Section 2.3, are in the 

fractional orders of shaft frequency. 

Assuming a signal ( )x t  consists of a periodic signal ( )Tx t  and a noise component ( )v t , 

the period of ( )Tx t  is 0T  whose corresponding frequency is 0f , thus the signal can be 

expressed as [90]: 

( ) ( ) ( )Tx n x n v n   ...................................................................................................... (3.8) 

The synchronous average of the signal ( )x t  by using TSA can be expressed as: 

1

0
1

1
( ) ( )

M

i

y n x t iT
M





   .............................................................................................. (3.9) 

where M  is the number of the average segments, ( )y t  is the averaged signal.  

3.5 Time-frequency representation and kurtogram  

The SK was first introduced by Dwyer, as a complement to the power spectral density 

(PSD). It was applied to overcome the inefficiency of PSD to detect and characterise 

impulses in a signal [91]. The definition of the “kurtogram” was first introduced by J. 

Antoni in order to generalise the so-called “spectral kurtosis” (SK) to a wider class of non-

stationary signals [92]. It is a fourth-order spectral analysis tool based on spectral kurtosis 

(SK) recently introduced for detecting and characterising non-stationarities in a signal. SK 

is a sensitive tool for detecting impulses in a signal and can indicate the frequencies that 

the impulses occur.  

In recent years, many kinds of implementation methods for the kurtogram have been 

proposed, such as those based on STFT, Filter Tree (FT), Discrete Wavelet Transform 

(DWT), Wavelet Packet Decomposition (WPD), etc. A brief introduction to these methods 

is summarised regarding their implementation and performance on noise reduction and 

signal enhancement. 

In the previous paper, the authors demonstrated the high potential of the spectral kurtosis 

(SK) to detect and characterise non-stationary signals. The present paper brings together 

these ideas and shows how the SK can be efficiently used in the vibration-based condition 

monitoring of rotating machines. First, and in contrast to classical kurtosis analysis, the SK 

provides a robust way of detecting incipient faults even in the presence of strong masking 

noise. Second, the SK offers an almost unique way of designing optimal filters for filtering 
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out the mechanical signature of faults. The first property is of practical importance for 

monitoring purposes, whereas the second one proves very useful in diagnostics.  

In 2006, J. Antoni firstly introduced the concept of the kurtogram based on STFT, from 

which optimal band-pass filters can be deduced; for instance, as a prelude to envelope 

analysis [92].  

In 2007 J. Antoni [93] proposed a fast algorithm of the kurtogram in order to make it a tool 

with potential on-line industrial applications. The presented algorithm has a computational 

complexity similar to that of the FFT. As a by-product, the fast kurtogram also returns the 

complex envelopes of the signal in selected frequency bands. These complex envelopes are 

ready for further processing, such as through envelope spectrum analysis.  

A kurtogram based on STFT limits the accuracy improvement of the kurtogram in 

extracting impulsive characteristics from a noisy signal. To overcome these shortcomings, 

in 2011 Yaguo Lei et al. [94] introduced WPT into the kurtogram to overcome its 

shortcomings and to further enhance its accuracy in discovering characteristics and 

detecting faults. The results from the experiment demonstration verified the effectiveness 

of the method in extracting the fault characteristics and diagnosing the faults of rolling 

element bearings. 

In 2011, Barszcz and JabŁoński [95] found that temporal signal-based kurtosis can be 

considerably affected by noise, and proposed a novel method called the protrugram, which 

calculated the kurtosis of envelope spectrum amplitudes. It is logical to measure kurtosis in 

the frequency domain. When a bearing is healthy, its envelope spectrum is randomly 

distributed over that of the whole frequency.  

In 2013, Dong Wang and Peter W. Tse [96] proposed an enhanced kurtogram, the major 

innovation of which is kurtosis values calculated based on the power spectrum of the 

envelope of the signals extracted from wavelet packet nodes at different depths. The power 

spectrum of the envelope of the signals defines the sparse representation of the signals and 

kurtosis measures the protrusion of the sparse representation. The enhanced kurtogram 

helps to determine the location of resonant frequency bands for further demodulation with 

envelope analysis. The frequency signatures of the envelope signal can then be used to 

determine the type of bearing fault. 
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3.6 Bispectrum analysis 

3.6.1 Conventional bispectrum 

Due to its inherent properties of nonlinearity detection and noise suppression, CB has been 

widely applied for suppressing noise and extracting the nonlinear fault information in the 

machinery fault detection and diagnosis areas. L. Saidi et al. [97] used CB to analyse the 

motor current signals for the fault detection of bearing defects, broken rotor bars, and their 

combined fault in induction machines. S. Guoji et al. [98] verified the prospects of CB for 

gearbox fault diagnosis by theoretical analysis of modulated vibration and practical 

vibration signals from a helicopter gearbox. H. Zhao et al. [99] applied CB to the vibration 

signals of engine crankshaft bearings for suppressing the interference of non-Gaussian 

noise. J. Huang et al. [100] implemented the feature extraction from vibration signals with 

CB for gearbox fault diagnosis. Y. Liu et al. [101] presented a method for gear pitting fault 

diagnosis using CB and 1(1/2)-dimension spectrum. Y. Xiao et al. [102] used CB to 

process the vibration signal of the diesel engine for diagnosis of the matching clearance 

between the piston pin and piston pin boss.  

For a discrete time current signal ( )x n , its Discrete Fourier Transform (DFT) ( )X f  can be 

defined as[103][106]: 

2( ) ( ) j ft

t

X f x t e 






   .......................................................................................... (3.10) 

In a complex number format, ( )X f  can be rewritten in the format of magnitude ( )X f  and 

phase ( )f : 

( )( ) ( ) j fX f X f e   ................................................................................................... (3.11) 

and the second-order measure (power spectrum) of ( )x t , can be computed by the formula 

*( ) ( ) ( )P f E X f X f  .............................................................................................. (3.12) 

where the complex *( )X f  is a conjugate of ( )X f  and E  is the statistical expectation. 

The power spectrum is a linear transform and is a function of the frequency f . Extending 

this definition to the measures of order 3 gives rise to the conventional bispectrum 

1 2( , )B f f  and it can be defined in the frequency domain as [107][108]: 
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*
1 2 1 2 1 2( , ) E ( ) ( ) ( )B f f X f X f X f f   ....................................................................... (3.13) 

where 1f , 2f  and 1 2f f  are the individual frequency components obtained from the 

Fourier transform integral. Note that second-order measures differ from third-order 

measures in that the latter are complex quantities containing both magnitude and phase 

information about the original time signal. Thus, the bispectrum detects the presence of 

quadratic phase coupling (QPC) [109]. 

If the frequency components at 1f , 2f  and 1 2f f  are independent of each other, each 

frequency will be characterised by statistically independent random phases distributed over 

 ,  . Upon statistical averaging, denoting expectation operator by E  in (3.13), the 

bispectrum will tend towards zero due to the random phase mixing effect. In this way, 

random noise can be suppressed significantly. On the other hand, if the three spectral 

components: 1f , 2f  and 1 2f f  are non-linearly coupled to each other, the total phase of 

the three components will not be random at all, even though each of the individual phases 

is random. In particular, the phases will have the following relationship [108]. 

2 1 2 1( ) ( ) ( ) .f f f f const       ................................................................................ (3.14) 

Consequently the statistical averaging will not lead to a zero value in the bispectrum. This 

non-linear coupling is indicated by a peak in the bispectrum at the bifrequency 1 2( , )B f f . 

To measure the degree of coupling between coupled components, a normalised form of the 

bispectrum or bicoherence is usually used and is defined as [107]: 

2
1 22

1 2 2 2
1 2 1 2

( , )
( , )

( ) ( ) (

B f f
b f f

E X f X f E X f f





 .......................................................... (3.15) 

3.6.2 Modulation signal bispectrum  

In 2004, Jason R. Stack et al. [40] developed an amplitude modulation detector for 

detection of signal-point defects in rolling element bearings in an incipient stage. For the 

application of amplitude modulation signals, the conventional bispectrum only considers 

the higher sideband and neglects the lower sideband. Furthermore, in the bearing vibration 

acceleration signals, the carrier is the resonance frequency which has high amplitude, and 

the modulating frequency is the fault frequency of bearing which has very low amplitude 

compared to the carrier. The conventional bispectrum is not suitable for this kind of signal. 
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To solve this problem, Jason R. Stack et al. proposed a new AM detector, which is referred 

to as a modulation signal bispectrum in this thesis. 

This approach allows an accurate quantification of modulating components in diagnosing 

different types of mechanical and electrical faults in machines and is particularly useful in 

extracting weak fault signatures in motor current signals [107][108][110]. It also has been 

applied to analyse the vibration signals [56][104][105] for bearings and gearbox fault 

detection and diagnosis.  

In the frequency domain, the MSB of a signal ( )x t  can be defined in the form of the DFT 

as: 

* *( , ) ( ) ( ) ( ) ( )MS c x c x c x c cB f f E X f f X f f X f X f    ............................................... (3.16) 

where ( , )MS c xB f f  is the bispectrum of the signal ( )x t , E is the expectation operator, xf  

is the modulating frequency, cf  is the carrier frequency,  c xf f  and  c xf f  are the 

higher and lower sideband frequencies respectively. This expression takes into account 

both  c xf f  and  c xf f  simultaneously and hence it is of particular interest to this 

study, which aims to explore sideband features in the MSB. It enables the qualification of 

modulation effects via the bispectral peak at bifrequency ( , )MS c xB f f . In addition, if 

random noise components are not coupled but have random distributions, the magnitude of 

the MSB will be close to zero. In this way, the MSB allows wideband noise and aperiodic 

components in bearing vibration signals to be suppressed effectively so that the discrete 

components relating to modulation effects can be revealed more clearly.  

The magnitude and phase of MSB can be expressed as Equations (3.17) and (3.18) 

respectively: 

* *( , ) ( ) ( ) ( ) ( )MS c x c x c x c cA f f E X f f X f f X f X f    ......................................... (3.17) 

( , ) ( ) ( ) ( ) ( )MS c x c x c x c cf f f f f f f f           .................................................. (3.18) 

To measure the nonlinear effects of modulation signals accurately, both higher sideband 

c xf f  and lower sideband c xf f  are considered simultaneously in Equation (3.16). If 

they are due to the nonlinear effect between cf  and xf , there will be a bispectral peak at 

bifrequency ( , )MS c xB f f . On the other hand, if these components are not coupled but have 

random distribution the magnitude of MSB will be close to nil. In this way it allows the 
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wideband noise in bearing vibration signals to be suppressed effectively so that the discrete 

components can be obtained more accurately.  

To measure the degree of coupling between three components, a modulation signal 

bicoherence (MSBc) can be used and calculated by Equation (3.19). 

 
 

       

2

2

2 2*

,
,

MS c x
MS c x

c c c x c x

B f f
b f f

E X f X f E X f f X f f



 

 ................................. (3.19) 

In addition, it can also be seen that for the case of 0xf  , the MSB is degraded to power 

spectrum as shown in Equation (3.20).  

* *( ) (0, ) ( ) ( ) ( ) ( )c MS c c c c cPS f B f E X f X f X f X f   ............................................. (3.20) 

The MSB analysis is also suitable for harmonic components in vibration signals.  

3.6.3 Phase relationship of MSB 

In this section, the phase relationship of MSB is derived for the application to amplitude 

modulation signals and harmonic signals. 

For an amplitude modulation signal 

To produce an amplitude modulation signal, suppose that there are two signals with 

different amplitudes, angular frequencies and initial phases: 

1 1 1 1

2 2 2 2

( ) cos( )

( ) cos( )

x t A t

x t A t

 

 

 

 
 ............................................................................................... (3.21) 

where 2 1  , 2( )x t  is the carrier signal. Then, the instantaneous phase of the two signals 

can be expressed as:  

 

 
1 1 1

2 2 2

( )

( )

x t t

x t t

  

  

 

 
 ...................................................................................................... (3.22) 

The amplitude modulation signal of these two signals can be written as: 

1 2

1 2 1 1 2 2

1 2 2 2 1 2 1 1 2 2

( ) [1 ( )] ( )

[1 cos( )]cos( )

cos( ) cos( )cos( )

mS t x t x t

A A t t

A A t A A t t

   

     

 

   

    

 ......................................... (3.23) 

To expand the second term of Equation (3.23), the sum-to-product formula in Equation 

(3.24) will be applied. 
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1
cos cos [cos(A B) cos(A B)]

2
A B      ........................................................................ (3.24) 

Then, the expression of the signal can be written as: 
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1 2 2 2 2 1 2 1 2 1 2 1
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  
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where  
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 ........................................................................ (3.26) 

1( )s t  is the carrier; 2( )s t is the lower sideband and 3( )s t  is the upper sideband. 

Therefore, the phase for the three components can be written as: 

1 2 2

2 2 1 2 1

3 2 1 2 1

[ ( )]

[ ( )] ( ) ( )
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According to Equation (3.18), the phase of MSB can be expressed as: 
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 .... (3.28) 

Hence, the MSB phase of an amplitude modulation signals is always zero. 

For a harmonic signal 

If only the first three components of a harmonic signal are considered, they are defined as: 

1 1 1 1

2 2 2 2

3 3 3 3
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 

 
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where 1A , 2A , and 3A  denote their amplitudes; 1 , 2 , and 3  denote their frequencies, 

1 , 2 , and 3  denote their initial phases, respectively. Furthermore, their frequencies 

have the relationship 2 1 3 12 , 3     , then 2 1 32    .  
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The harmonic signal can be expressed as 

1 2 3

1 1 1 2 2 2 3 3 3

( ) ( ) ( ) ( )
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 .......................................... (3.30) 

According to Equation (3.18), the phase of MSB can be expressed as  

1 2 3

3 1 2 2

3 3 1 1 2 2 2 2

1 3 2

( , , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

.

MS c x c x c cf f f f f f

y y y y

t t t t

const

       

   

       

  

     

   

       

  



 ................................... (3.31) 

Hence, the MSB phase of a harmonic signal is a constant, which means MSB is also 

suitable for analysing harmonic signals while the angular frequencies of the harmonic 

components meet the condition 2 1 3 2      . It means the MSB can be extended to 

higher harmonic components. 

3.7 Summary 

The chapter reviews the fundamentals of key signal processing methods that will be further 

studied in this thesis. TFR, wavelet based analysis and their derived kurtogram analysis are 

particularly effective for enhancing impulsive components but they need considerable 

optimisation for achieving an optimal analysis. Nevertheless, they do not have the 

mechanism of noise reduction; rather, they just highlight the signals of interest. 

ALE has the capability of noise reduction and can be implemented with relatively simple 

iterative approaches in real-time. However, its noise reduction performance can be limited 

by the instability of existing methods. 

TSA is the most effective method for noise reduction and periodic signal enhancement. 

The major drawback is that it needs additional channels for collecting the angular reference 

signals and sensor installation is often restricted in practice because of the connection with 

rotating components. 

Bispectrum analysis including both CB and MSB achieves noise reduction through signal 

phase alignments without the need for the reference signals. In addition, bispectrum has the 

capability of nonlinear characterisation and leads to the sparse representation of 

complicated signals for more reliable feature extraction. 
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These understandings of information enhancement mechanisms provide a concrete basis 

for developing more effective methods to process the signals from various cases in this 

study. Details of development will be presented in Chapter 4-Chapter 9.  
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Chapter 4  
Impulse enhancement for a two-stage helical gearbox fault 

diagnosis 

The periodic impulsive component is one of the typical fault characteristics in vibration 

signals from gearboxes with local tooth defects. However, this component exhibits very 

small amplitude in the early stage of the fault and is often masked by various noises, which 

makes it difficult to extract accurately for fault detection. In the gearbox vibration signals, 

the two main types of noise are gear mesh components and random noise. Gear mesh 

components are inherent noise generated by the machinery’s running process and random 

noise is inevitably induced by the measurement system. In this chapter, to enhance the 

impulses for reliable fault diagnosis especially for incipient fault, TSA and ALE are 

applied to reduce the random noise and the periodic gear mesh components.   
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4.1 Introduction 

Impulsive vibration signals in machinery are often caused by component impacts which are 

commonly associated with component faults. It has long been recognised that the presence 

of a fault is often indicated by the presence or increase in impulsive components in 

measured signals. However, it tends to be difficult to make objective measurements of 

impulsive components due to the existence of high levels of background noise. The 

detection of these impulsive components is hampered by the presence of the signals 

associated with the normal running of the machine, with the consequence that the detection 

of the weak impulsive components, which are especially associated with incipient faults, is 

difficult [71]. It is the ‘normal’ signals which form the background noise environment 

against which the detection of fault induced impulsive components must be conducted. To 

improve the precision of fault diagnosis, it is valuable to enhance the impulsive 

components by suppressing this background noise prior to further processing. 

De-noising and extraction of such faulty signals are very important for fault diagnostics, 

especially for early fault detection, in which the fault features are often very weak and 

embedded in noise. Therefore, it is necessary to enhance the data reliability and improve 

the accuracy of the signal analysis. After the successful pre-processing, the signal has an 

increased SNR, making it more amenable to one of a gamut of signal processing tools that 

can characterise the signal, such as Auto-Regressive (AR) modelling, kurtosis evaluation, 

cepstrum analysis, time-frequency analysis and higher order spectra analysis [111]. 

The ALE was introduced as a method for detecting a periodic signal in an incoherent 

background or conversely for removing periodic interference from a broadband signal of 

interest [112]. Naoto Sasaoka etc. applied ALE to reduce the sinusoidal noise in noisy 

speech signal [113]. J. R. Mohammed etc. presented a noise reduction system based on two 

stages of operation with the first stage based on the ALE filters and the second stage on 

NLMS (Normalised Least Mean Square) filter. The first stage reduces the sinusoidal noise 

from the input signal and the second stage reduces the wideband noise [114]. S. K. Lee and 

P. R. White exploit two ALE filters in series to reduce the level of background noise. The 

resulting enhanced signals are analysed in the time-frequency domain to obtain 

simultaneous spectral and temporal information. The technique has been successfully 

applied to the vibration signals from an internal combustion engine and an industrial 

gearbox [111].  
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However, the scheme proposed by S. K. Lee and P. R. White applies two ALE filters 

which have different structures make it more complex and has limited capability in 

reducing random noise. Therefore, TSA is used to suppress the random noise in vibration 

signals which has been widely applied to gearbox vibration signals. In this chapter, a signal 

processing scheme which combines TSA and ALE is proposed to reduce the random noise 

induced by the measurement process and gear mesh components respectively. In such a 

way, the impulses containing fault information could be highlighted to produce more 

reliable detection and diagnosis results. Because TSA has been introduced in Section 3.4, 

the principle and parameter selection method for ALE are described in details in this 

chapter. 

4.2 Signal processing method 

4.2.1 Denoising scheme 

The principle of the ALE [115] used to reduce sinusoids will be described in this section 

based on the block diagram given in Figure 3.1. The primary input and reference input 

signals of the system are given by 

( ) ( ) ( )d n s n n   ......................................................................................................... (4.1) 

( ) ( ) ( ) ( )x n d n s n n       ............................................................................... (4.2) 

where ( )s n  is the fault impulse signal, ( )n  represents the sinusoidal noise and   is the 

time delay factor. Due to the short time duration of impulses, the autocorrelation of 

impulses fades as   increases. On the other hand, the delayed sinusoidal noise ( )n   is 

correlated with ( )n . Thus, when the adaptive filter is stable, ( )n  may be estimated by the 

stationary output of adaptive filter ( )py n . The impulsive components in ALE non-stationary 

output ( )fy n  are enhanced compared with the input signal ( )d n .  

( ) ( ) ( )

ˆ( ) ( )

ˆ( ) ( ) ( )

f py n d n y n

d n n

s n n n



 

 

 

  

 ............................................................................................. (4.3) 

The cost function of the NLMS algorithm is defined as:  
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 ............................................................. (4.4) 

Since the fault signal is uncorrelated with noise, ( )( ( ) ( )) 0pE s n n y n 
 

  . Then, 

Equation (4.4) becomes: 

 
222 ( ) ( ) ( ) ( )f pE y n E s n E n y n       

 ..................................................................... (4.5) 

Minimising 
2[ ( )]fyE n  is equivalent to minimising 2[ ( ) ( )]pE n y n  . Thereafter, the convergence 

of the algorithm will ensure ( )py n  achieves the minimum mean-square estimation of ( )n . The 

signal is separately into two parts: ( )fy n  contains mainly non-stationary components (e.g. 

impulses) and ( )py n  contains mainly stationary components (e.g. gear mesh frequencies). The 

fault impulses remain in ( )fy n , which is used for the following feature extraction. 

There are three important parameters in ALE: the step size  , the length of filter and the 

number of delay samples.   is the step size parameter controlling the convergence rate 

within its suitable range. The step size value affects the convergence behaviour of an LMS 

filter; too small a value of   leads to extremely long convergence time of the algorithm, 

whereas too large a value of   causes the algorithm to diverge, thus degrading the 

performance of the adaptive filter. Therefore, choosing a suitable value for the step size is 

necessary when implementing the LMS algorithm as an adaptive filter. 

The periodic nature of the impulsive component lays open the possibility that the first stage 

of the scheme will identify them with the narrowband components and in doing so 

attenuate them. To avoid such an eventuality, care over the choice of the parameters   and 

L  must be exercised. From reference [114], the length of the filter must satisfy the 

condition in Equation (4.6), where pT  is the period of the signal. 

2pL T    ................................................................................................................. (4.6) 
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4.2.2 Parameters selection method 

In this part, the selection method of ALE parameters applied in this chapter is described. 

Kurtosis is commonly used in engineering for the detection of fault symptoms because it is 

sensitive to sharp variant structures, such as impulses. The bigger the impulse in a signal, 

the larger the kurtosis is. The kurtosis value comparison of signals after the ALE 

processing based on different parameter sets is shown in Figure 4.1. The green line 

indicates the kurtosis value of the signal before ALE processing. Different line colours and 

style represent different   values, and L  indicates the length of the adaptive filter. 

From Figure 4.1, it is obvious that the kurtosis values are increased after ALE. To compare 

the impulse enhancement effects, the parameter sets corresponding to the maximum 

kurtosis under each L  are selected for comparison. Then, the signals are analysed in the 

time-frequency domain. 

  

Figure 4.1 Kurtosis values under various parameters 

(a) L=16; (b) L=32; (c) L=64; and (d) L=128 

Figure 4.2 illustrates the time-frequency analysis comparison between the signal and 

signals after ALE with four different parameter sets. Figure 4.2(a) shows the raw signal 

and Figure 4.2(b)-(e) presents the ALE results while the parameters are selected by 

maximum kurtosis criteria in Figure 4.1 with the four filter lengths 16, 32, 64 and 128. It 
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can be seen that the main periodic components at 1500Hz and 2500Hz are reduced greatly 

after ALE and the impulsive components, which have very small amplitudes can be 

observed clearly. It is obvious that the result in Figure 4.2(e), which corresponds to the 

maximum kurtosis value parameter set in Figure 4.1, can reveal the impulsive components 

much better than the other three parameter sets. Thus, the kurtosis maximising criterion is 

applied to choose the ALE parameters in the following machine fault diagnosis. 

 

Figure 4.2 Time-frequency analysis results 

(a) TFR of signal; (b) TFR of ALE output (L=16); (c) TFR of ALE output (L=16);   

(d) TFR of ALE output (L=32); and (e) TFR of ALE output (L=64). 

4.3 Experimental setup 

This experimental verification is based on a test system consisting of a 3-phase induction 

motor, two permanent helical gearboxes connected back to back, couplings, load devices, 

and a resistor bank, as illustrated in Figure 4.3, of which the main subsystems are detailed 

in the schematic diagram in Figure 4.4.  

The gearbox under testing is a two-stage helical gearbox, detailed in Table 4.1 and Figure 

4.5, which is a standard industrial gearbox used for the power transmission of different 

machines such as compressors and pumps. Using such a commercial gearbox allows 

signals to be more realistic and hence the verification can be more reliable. 

 



CHAPTER 4 

83 

 

Figure 4.3 Gearbox test rig used in this research 

 

Figure 4.4 Schematic layout of the experimental gearbox test rig 

Table 4.1 Gearbox specification 

Model: 

M07223.6BMCE1A11.A 

Power capacity: 

10kW 

Speed ratio: 

3.667 

Description 
1st stage 

PG0740.8/M07E 

2nd Stage 

M07-24.5B-C 

Tooth number Z1/Z2=58/47 Z3/Z4=13/59 

Speeds of shaft 24.42 Hz (input ) at full load 6.64 Hz (output ) at full load 

Meshing frequency 1 1416mf Hz  2 391mf Hz  

 

Sensor 
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Figure 4.5 The illustrative construction of testing gearbox 

Three fault cases (30%, 60%, and 100% tooth damage) were simulated on the pinion gear 

at the first stage. The first is a tooth breakage of 30% on one of the 58 teeth of the pinion 

gear; the second is 60% tooth breakage; and the third is 100% tooth breakage on the same 

teeth. The 30% and 100% tooth damage gears are illustrated in Figure 4.6.  

 

Figure 4.6 Gear faults: (a) 30% tooth damage and (b) 100% tooth damage  

The position of the vibration sensor is illustrated in Figure 4.4. Vibration signals were 

measured by a type PCB 338C04 accelerometer with a sensitivity of 100mv/g, and the 

frequency response range is from 0 Hz to 20 kHz. It is mounted in the horizontal direction 

of the gearbox housing, as shown in Figure 4.4. An encoder was installed at the end of the 

motor shaft to measure the instantaneous angular speed and record the initial phase of the 

input gear per revolution.  

Vibration signals from an accelerometer were collected from the same gearbox in which 

the two broken gears were tested separately, after a baseline signal was collected. All of 

the tests were performed under an operating condition of 90% load. The data was sampled 
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at a rate of 100 kHz, at which the narrow pulse signal from the shaft encoder was also 

acquired simultaneously for implementing TSA. 

4.4 Results and discussion 

The practical gearbox experimental vibration signals were collected when the gearbox 

operated under five different loads and four conditions (Healthy, 30% tooth breakage, 60% 

tooth breakage and 100% tooth breakage).  

 

Figure 4.7 Raw vibration signals in time domain for (a) baseline; (b) 30% damage; (c) 

60% damage; and (d) 100% damage 

Figure 4.7 gives out the raw vibration signals for four cases under the 3rd load and the 

baseline signal is collected under healthy condition. Figure 4.8 shows the TSA results of 

the vibration signals given in Figure 4.7 for five revolutions of the input shaft. It can be 

seen that the impulsive components in the vibration signals are highlighted for all of the 

test conditions. TSA signals show a much clearer indication of the 60% and 100% tooth 
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damage compared with the baseline and 30% tooth damage. However, the signals between 

the baseline and 30% tooth damage cannot be observed with noticeable differences. 

 

Figure 4.8 TSA vibration signals in time domain for (a) Baseline; (b) 30% damage; 

(c) 60% damage; and (d) 100% damage 

To evaluate the denoise effect of the ALE algorithm, Figure 4.9 and Figure 4.10 present 

the time-frequency analysis results for comparison. Taking the signals under the 4th load 

as an example, signals under other loads have similar performance. As shown in Figure 

4.9, there are several periodic meshing frequencies generated by rotation of the machine at 

about 1500Hz, 3000Hz and 4500Hz and can be treated as noise for fault detection. The 

purpose of ALE is to reduce these frequencies. The TSA signals also contain impulsive 

components which are of short duration and periodic contents for certain frequencies. 

These components carry fault information of gearbox tooth breakage. Figure 4.10 shows 

the results after the ALE processing. It can be seen that the mesh components are reduced 

significantly. The results show that ALE is effective in reducing periodic components and 

highlights impulses by reducing the gear mesh components. 
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Figure 4.9 TSA vibration signals in time-frequency domain for (a) Baseline; (b) 30% 

damage; (c) 60% damage; and (d) 100% damage 

 

Figure 4.10 Signals after ALE in time-frequency domain for (a) Baseline; (b) 30% 

damage; (c) 60% damage; and (d) 100% damage 

For a detailed comparison, two common feature parameters (root mean square (RMS) and 

kurtosis) are calculated from the TSA vibration signals and the ALE signals. As shown in 
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Figure 4.11(a), RMS is not able to separate the four cases under different loads. From 

Figure 4.11(b), it can be seen that the kurtosis values of 60% tooth damage and 100% tooth 

damage have been separated from the other two cases except for the first load. However, 

the difference between the baseline and 30% tooth damage is not very obvious for fault 

separation. Figure 4.11(c) and Figure 4.11(d) illustrate the RMS and kurtosis value 

comparison from the signal after the ALE denoising processing. From the RMS value 

comparison of the ALE output signal, there are differences under all loads except for the 

first and all four condition cases, which gives a clear difference compared with the results 

of the TSA signal. The kurtosis value of the ALE signal is much higher than that of the 

TSA signal, which means the impulsive components are better enhanced. But the 

difference between the kurtosis values of different condition cases is not as clear as the 

RMS value of ALE signals. Figure 4.12 illustrates the results obtained from another set of 

ALE parameters; the results for 30% tooth damage are worse, while for higher severity 

faults the results are better. 

 

Figure 4.11 RMS and kurtosis value comparison of TSA and ALE signal (L=20, 

=0.075, =12) 

(a) RMS of TSA signal; (b) Kurtosis of TSA signal; (c) RMS of ALE output; and (d) 

Kurtosis of ALE output 
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Figure 4.12 RMS and kurtosis value comparison of TSA and ALE signal (L=32, 

=0.0375, =60)  

(a) RMS of TSA signal; (b) Kurtosis of TSA signal; (c) RMS of ALE output; and (d) 

Kurtosis of ALE output 

4.5 Summary 

In this chapter, ALE has been examined for the tooth breakage detection and diagnosis of a 

two-stage helical gearbox based on noisy vibration signals. Firstly, TSA is used to suppress 

the random noise, and then ALE is applied to reduce the inherent periodic mesh 

components, at last TFR further highlights the impulsive fault features in the time-

frequency domain. In this way, the incipient tooth breakage fault can be detected 

successfully. The results obtained from simulating and experimental vibration signals of 

the two-stage helical gearbox have confirmed that the ALE method is effective in reducing 

the periodic gear mesh components and thereby enhances the impulsive fault features in 

noisy vibration signals. The results show a clear difference even between the baseline and 

a small percentage (30%) tooth breakage of a helical gear. 
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Chapter 5  
Gear fault diagnosis based on an optimised wavelet analysis 

Motivated by the mechanism adopted in ALE, a Shannon entropy difference based method 

is proposed to select an optimal wavelet scale for detecting gear faults. The results 

obtained based on vibration signals from the two-stage helical gearbox have verified that 

the proposed method is effective for extracting the small impulsive component to show a 

clear difference between the baseline and a small fault i.e. 30% tooth breakage of a helical 

gear. Similar to Chapter 4, TSA is applied for the signal pre-processing before the wavelet 

analysis. 

  



CHAPTER 5 

91 

5.1 Introduction 

In machinery fault diagnosis, impulses often appear in vibration signals, which means 

localised fault occurs. The behaviour of a impulsive signal is non-stationary, changing 

according to time, so it is important to analyse time and frequency information 

simultaneously. 

Wavelet transform is capable of providing time-domain and frequency-domain information 

simultaneously. Similar to a wavelet function, the impulsive feature components of 

vibration signals have local energy distributions in both time domain and frequency 

domain. However, because there are different types of wavelets each of which has different 

time-frequency structures, it is obvious that using an optimal wavelet, whose time-

frequency structure matches that of the impulsive component best, can achieve the best 

performance in the impulsive component detection. 

As reviewed in Section 3.3, wavelet analysis has been successfully applied to vibration 

signals from bearings and gearboxes. Many parameter optimisation schemes have been 

proposed, such as minimum wavelet entropy, maximum kurtosis, genetic algorithm, etc. 

Shannon entropy in the time domain can measure signal or system uncertainty. Spectrum 

entropy based on Shannon entropy can be taken as a measure of signal or system 

complexity. Wavelet entropy measures obtained based on wavelet analysis can signify the 

complexity of unsteady signal or system in both time domain and frequency domain, 

because it is a method based on time-frequency analysis, featured with multi-resolution 

analysis [117]. The appearance of impulsive components in a signal will lead to the 

reduction of entropy value. Therefore, in the wavelet spectrum, the entropy of coefficients 

has lower value at the scale where the impulses account for a larger proportion. The 

purpose this chapter is to optimise the wavelet parameters for the analysis of the fault 

feature impulse component of the vibration signal by a maximum Shannon entropy 

difference method, and applying it to the small tooth break defect detection of a gear box. 

5.2 Signal processing method 

5.2.1 Characteristics of Morlet wavelet transform 

The definition of the real Morlet wavelet in the time domain and its Fourier spectrum have 

been introduced in Section 3.3. The shape of the mother wavelet is controlled by bf  and 

cf . In particular, cf  is related to the oscillation frequency, whereas bf  controls the decay 
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rate of the exponential envelope in the time domain. The trade-off of two parameters will 

thus regulate the time and frequency resolution of wavelet analysis. The frequency 

resolution will increase with the increase of bf , whereas time resolution will decrease. 

When bf  tends to be 0, the Morlet wavelet becomes a Dirac function with the finest time 

resolution. In contrast, when bf  tends to be infinity, the Morlet wavelet degrades to a 

cosine function which has the finest frequency resolution. The central frequency cf  

controls the oscillatory frequency of the Morlet wavelet. When cf  is larger, the oscillatory 

frequency of the Morlet wavelet is higher and will lead to an increase in the frequency 

resolution of the Morlet wavelet.  

If a daughter wavelet is considered as a filter, the wavelet transform of Equation (1.9) is 

actually a filter bank [84]. Choosing a suitable combination of bandwidth bf  and centre 

frequency cf  will lead to the optimal result that represents the key characteristics of the 

signals.  

The faults localised on one tooth or a few teeth such as cracks and spalls produce the 

modulation effects during the engagement of the fault teeth. Consequently, a large number 

of sidebands of the tooth-meshing frequency and its harmonics in the spectrum is 

generated and spread over a wide frequency range. The sidebands are spaced by the 

rotation frequency of the fault gear or the gear shaft and characterised by low amplitudes 

[120]. To show the key characteristics of the Morlet wavelet transform and the influences 

of its parameters, a simulated signal is synthesised based on the characteristics of gear 

vibration signals, as described in Section 2.2.2. 

Figure 5.1(a)-(c) show contour plots of the CWT coefficient of the simulated signal with 

three sets of different wavelet parameters. It is quite clear that the repetitive spikes, which 

are illustrated by straight patches across a wide number of scales, can be observed for all 

sets of the parameters used. This demonstrated that the Morlet wavelet has superb 

performance in enhancing the feature from the small impulses, allowing the easy 

separation of the small impulse and hence the high capability of fault detection.  

However, a careful study of these three results has found that there are slight differences 

between different parameter sets. For smaller cf  CWT of Figure 5.1(a) shows as being 

coarser in scale direction compared with that of Figure 5.1(b) obtained from a higher cf  
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value. For a larger bf  the scale resolution is further improved, as shown in Figure 5.1(c) 

when the bf  is 7. However, this higher bf  reduces the performance in discriminating the 

impulse in the time direction.  

 

Figure 5.1 Wavelet coefficients of simulated signal using different parameters 

(a) W1:fc=0.7, fb=1; (b) W2: fc=1.05, fb=1; (c) W3: fc=1, fb=6; and (d) Entropy vs. 

scales 

To give an accurate measure of the performance in detecting these impulses, the Shannon 

wavelet entropy, which reflects the sparsity of the wavelet transform performance and used 

in [82][83], is calculated at different scales by: 

1

( ) ( ) log ( )
N

i j i j i
j

En a p a p a


    ...................................................................................... (5.1) 

and the probability density of the wavelet coefficient along the time direction at a given 

scale ia  is:  

1

( ) ( , ) / ( , )
N

j i i j i j
j

p a WT a t WT a t


   .................................................................................. (5.2) 
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where  
1,...

( , )i j
j N

WT a t


 is the class of the coefficients at scale , 1,...,ia i M ; and N is the 

sample number along the time direction. Figure 5.1(d) shows the entropy values over 

different scales for the three wavelet parameter sets. It can be seen that entropy values are 

high at low scales for all parameters set, showing that these scales give low features for the 

impulse signals, which are clearly indicated by the high levels and crowded contours in all 

three plots. On the other hand, the entropy amplitude becomes lower in high scale ranges, 

showing closer consistency with that in the contour in presenting the discrimination 

performance of the impulses. 

Moreover, the minimum values of entropy are different for three different parameter sets. 

The parameter set: 1.05cf   and 1bf   gives the minimal entropy, showing it is a better 

selection of wavelet parameters. Furthermore, this minimum corresponds to a high scale 

value. This is very close to the frequency content of the impulses induced in the simulated 

signals. 

5.2.2 Optimisation of Morlet wavelet by maximising wavelet entropy difference 

Based on understandings from previous studies, the Morlet wavelet parameters have to be 

optimised to obtain the best detection of impulse components. Entropy technique based 

optimisation has been applied in adaptive machine fault detection and diagnosis and shows 

good results in many industrial fields, such as system parameter recognition, structure 

optimisation, device operation-state detection and fault diagnosis [85]-[88]. Based on the 

wavelet optimisation procedure suggested in [80][83], the bf  and cf  in Morlet wavelet are 

optimised for minimising the entropy of two simulated signals according to Equation (2.6). 

The first signal has smaller impulse components, .i.e. 90% of that in 2 ( )s t  and 3( )s t , 

whereas the second has larger impulse components; i.e. the sample amplitude calculated by 

Equation (2.7).  

But these methods may have problems in extracting useful features when signals have 

inherent components with high amplitudes. Particularly, vibration signals from a 

multistage gearbox have modulating components and mark the small impulse component 

due to a small fault, which will be demonstrated in the next section. Some big impulses 

generated by machine rotation movement will make the result worse. On the other hand, 

the impulse for a small fault is generally so small that makes it difficult to recognise the 

fault components. To solve this problem, a new optimisation method based on maximum 

Shannon entropy difference is proposed, which takes the entropy difference between the 
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fault signal and the baseline as the criterion in applying wavelet analysis, and the constant 

components such as those of meshing frequencies could be reduced, making it much easier 

to extract fault feature. 

Assuming the CWT results of the two signals ( )x t  and ( )y t  are denoted with ( )X a  and 

( )Y a , where a denotes the scale in wavelet analysis, then the entropies ( )iEnX a  and 

( )iEnY a  are calculated along the time direction at the scale ia , ( 1,...,i M ), separately. 

Signal ( )x t  is deemed as the reference signal. 

Then the entropy difference between the two signals is obtained by: 

( ) ( ) ( )i i iEnDiff a EnY a EnX a   .................................................................................... (5.3) 

And the maximum entropy difference is defined as: 

max[ ( ) ( )]i iMaxEnDiff EnY a EnX a   .......................................................................... (5.4) 

The procedure of the new adaptive method is described as follows: 

(1) Choose a proper range for bandwidth bf , centre frequency cf  and scale ia  to 

ensure the fault feature exists in the analysis range, which is around the first few 

meshing components. 

(2) Firstly, perform the processes for the baseline signal because this is the reference 

for fault detection. Select a couple of bf  and cf , and compute the Shannon entropy 

for each scale as ( )iEnR a . Follow the same procedure to compute the entropy of a 

small fault signal as the baseline signal and get ( )iEnS a . 

(3) Then, compute ( ) ( ) ( )i i iEnDiff a EnR a EnS a   to get the entropy difference between 

the two faults and the baseline signal. Also, find the maximum entropy difference 

along the scale and save as ( , ) max( ( ))iMaxEnDiff fb fc EnDiff a , so there is a 

wavelet entropy difference series ( )iEnDiff a  for each combination of ( , )b cf f . 

(4) Then, repeat steps (2) and (3) for each combination of bf  and cf . Then, a set of 

( , )b cMaxEnDiff f f  for every bf  and cf  is obtained. 

(5) Next, find the best parameters 0bf  and 0cf , which is the one where the entropy 

difference ( , )b cMaxEnDiff f f  is the maximum. 
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(6) The best scale 0ia  is the one making ( )iEnDiff a , which corresponds to 0bf  and 0cf , 

getting the maximum value. 

The appearance of impulsive fault components could result in a decrease of the entropy 

value, compared with the baseline signal the more it decreases, the more impulse 

components are taking place. Therefore, the scale selected with maximum entropy 

difference criteria is more reliable for fault detection. This optimising method will reduce 

the influence of periodic components generated by rotation machine mechanism and 

enhance the fault feature of impulsive components. 

5.3 Experimental setup 

 

Figure 5.2 Three condition signals in the time domain 

(a) Baseline; (b) Smaller fault; and (c) Larger fault 
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of wavelet transform and the smaller tooth breakage is interesting in this study to evaluate 

the performance of the proposed wavelet analysis method. 

5.4 Results and discussion 

The vibration signals under three kinds of healthy condition (baseline, smaller fault and 

larger fault) are applied to verify the effect of the proposed method. Figure 5.2 shows the 

three kinds of signals in the time domain and Figure 5.3 shows the corresponding spectra. 

It is difficult to see the fault feature, especially for the baseline and smaller fault.  

Figure 5.4 and Figure 5.5 give out the adaptive wavelet results for the smaller fault. Figure 

5.4 is the adaptive wavelet spectrum for the baseline and small fault signal. Figure 5.5 plots 

the entropy of the two signals and the entropy difference between them according to scale. 

The entropy difference reaches the top point when the scale is 34. This indicates the fault 

feature is best revealed at scale 34. 

 

Figure 5.3 Three condition signals in the frequency domain 

(a) Baseline; (b) Smaller fault; and (c) Larger fault 
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Figure 5.4 Adaptive wavelet results for the smaller fault 

(a) Baseline and (b) Smaller fault 

 

Figure 5.5 Wavelet entropy values for the smaller fault 

(a) Entropy and (b) Entropy difference 
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Figure 5.6 Adaptive wavelet results for the larger fault 

(a) Baseline and (b) Larger fault 

 

Figure 5.7 Wavelet entropy values for the larger fault 

(a) Entropy and (b) Entropy difference 
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Figure 5.6 and Figure 5.7 present the adaptive wavelet results for the larger fault. Figure 

5.6 is the adaptive wavelet spectrum for both the baseline and the larger fault signal. The 

fault features are very obvious and are spread along the scale direction. Figure 5.7 plots the 

entropy of the two signals and the entropy difference between them for different scales. 

The entropy difference is relatively high in the scale range from 25 to 35. This means the 

fault feature is obvious in this scale range. Any one of these scales in this range can be 

used for detection. The entropy difference reaches the top when the scale is 31, at which 

the best detection of impulsive components can be achieved. 

From the experimental results, it can be concluded that the adaptive wavelet method is 

effective in enhancing weak impulsive components. The method proposed in this chapter 

has the ability to extract small faults from complicated gearbox signals. 

5.5 Summary 

In this chapter, an adaptive wavelet analysis technique based on the Shannon entropy 

difference is developed and applied to gearbox vibration signals for detecting incipient 

gear faults. The optimisation is implemented on both the underline signal and a reference 

signal, such as a baseline measurement or a simulated signal. In this way, the effects of 

dominated components (e.g. gear mesh frequencies) are reduced and new impulsive 

responses can be enhanced significantly to obtain reliable fault detection.  

This method can also be potentially applied to bearing fault analysis. However, the 

drawback of this method is that it needs a baseline signal as a reference, which may not be 

available. This could limit the application of this method as it needs additional efforts to 

obtain and keep the reference signal.  
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Chapter 6  
Bearing fault severity diagnosis based on kurtogram and 

envelope analysis 

Envelope analysis is a widely used method for bearing fault detection. To obtain high 

detection accuracy, it is critical to determine an optimal filter so that the envelope signal 

obtained highlights more the impulsive components due to the fault. Kurtogram is a 

popular and effective method for automatic filter band selection for bearing fault detection 

in recent years. This chapter focuses on the study of the bearing fault severity diagnosis 

based on kurtogram and envelope analysis. It was carried out with simulated vibration 

signals from bearings with defects of constant width on outer race, inner race and roller, 

respectively. Then, an experimental study follows to evaluate this model.  
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6.1 Introduction 

Rolling element bearings are at the heart of almost every rotating machine. Therefore, they 

have received a lot of attention in the field of vibration analysis as they represent a 

common source of faults [121]. In order to keep machinery operating at its best 

performance and avoid catastrophic failure, financial cost and personal injuries, different 

methods bearing fault diagnosis have been developed and used effectively to detect 

machine faults at an early stage, among which vibration signal processing is the most 

frequently applied one [122]. 

Vibration based condition monitoring have been widely used for detection and diagnosis of 

bearing defects for several decades [123]. A limited amount of work has been undertaken 

in using the vibration signals to investigate the bearing fault severity levels. Ocak et al. 

[124] introduced a bearing fault detection and diagnosis scheme based on hidden Markov 

modelling of the vibration signal, the data was gathered for four different conditions 

(normal, inner race fault, outer race fault and ball fault) with three different severities. 

Ocak et al. [125] presentd two separate algorithms for estimating the running speed and the 

bearing key frequencies of an induction motor using vibration data of ball bearing with 

inner and outer race defects with two different severity levels. Xu et al. [126] presented 

different bearing fault conditions feature parameters using a modified fuzzy ARTMAP 

(FAM) network model based on the feature-weight learning of inner race, outer race and 

ball faults using four different defect diameters. Zhang et al. [127] proposed a new method 

based on multi-scale entropy and adaptive neuro-fuzzy interference system conducted on 

electric motor bearings with three different fault categories of outer race, inner race and 

ball faults and four levels of fault severity. De Moura et al. [128] combined signal 

processing and pattern recognition techniques to diagnose three severity levels of the outer 

fault as well as no-fault class was also considered. Muruganatha et al. [129] proposed a 

simple time series method for bearing fault feature extraction using singular spectrum 

analysis of the vibration signal for the inner race, outer race and ball defects with four 

different fault sizes. Zhu et al. [130] proposed a fault feature extraction method based on 

the intrinsic mode function, envelope sample entropy for rolling bearings fault diagnosis. 

Single point faults with four different fault diameters were introduced into the test bearings 

with four conditions separately, which are healthy, with the inner race fault, with the outer 

race fault and with the ball fault. Jin et al. [131] presented a fuzzy ARTMAP (FAM) 

ensemble approach based on the improved Bayesian belief method and applied to the fault 
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diagnosis of rolling element bearings with four different defect diameters and introduced 

into the inner race, the ball and outer race.  

However, most of these works are for fault detection and fault type diagnosis and limited 

investigations have been conducted on fault severity diagnosis, which is critical to make 

decisions for maintenance actions. To improve current diagnostic capability, this chapter 

pays more attention to bearing fault severity diagnosis. 

6.2 Vibration responses to different sizes of fault 

The bearing frequency equations provide a theoretical estimate of the frequencies to be 

expected when various defects occur on the bearing elements, based on the assumption that 

an ideal impulse will be generated whenever a bearing element encounters a defect. For 

localised bearing faults such as spalling and pitting, sharp force impacts will be generated. 

These impacts will excite structural resonances and the resulting vibration will be 

measured by the transducer mounted externally on the machine casing [132].  

However, due to the different geometry of the contact between the localised fault and the 

bearing component, the contact stiffness can change because of the different geometrical 

properties in contact zones. On the other hand, a damaged bearing (particularly a small 

amount of damage at an early stage of damage development) usually produces small 

amplitudes of vibration in high frequency bands due to impulsive impacts [133]. 

The contact deformation is composed of geometric deformation and elastic deformation. 

Elastic deformation occurs along the contact surfaces of a bearing’s rolling elements and 

raceway surfaces under loading. Geometric deformation caused by defect is related to 

defect location and size, while elastic deformation is related to load and defect size. 

crd

d

 

Figure 6.1 Schematic diagram of geometric deformation 
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Figure 6.2 Geometric deformation for two kinds of contact 

(a) Roller-Outer race (concave-convex); and (b) Roller-Inner race (convex-convex) 

 

Figure 6.3 Frequency responses of difference pulse heights 

(a) Half-sine pulse of different heights; and (b) Frequency response of different pulse 

heights 

The total deformation   includes geometric deformation g  and elastic deformation e . 

g e     ................................................................................................................... (6.1) 
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As shown in Figure 6.1, if the width of fault is d  and radius of circle is r , the chord 

height can be expressed as 

2
2

2

d
crd r r

 
    

 
. ................................................................................................... (6.2) 

There are two kinds of contact model between bearing components, as shown in Figure 

6.2, which are contact between a roller and outer race (concave-convex) and contact 

between a roller and inner race (convex-convex). If the chord height for the roller, outer 

race and inner race are defined as rcrd , ocrd  and icrd , respectively, then the geometric 

deformation of the roller-outer race go  and the roller-inner race gi  are given by 

Equation (6.3) and Equation (6.4), respectively. 

go r ocrd crd    ........................................................................................................ (6.3) 

gi r icrd crd    .......................................................................................................... (6.4) 

Furthermore, considering that the fault on the inner race creates convex-convex contact 

whereas the fault on the roller has both concave-concave and concave-convex contact. The 

vibration impact from the inner race defect may create the highest responses when the sizes 

of the faults are the same on different races.  

From the relationship, it is easy to understand that geometric deformations on different 

components have a relationship as shown in Equation (6.5). 

go gr gi     ............................................................................................................ (6.5) 

Based on this relationship, Figure 6.3 illustrates the half-sine pulses of three different 

heights: 1, 10 and 100 and their frequency responses. It is obvious that when the amplitude 

is higher, the frequency response increases. This shows that when the fault size is the same, 

the fault on the inner race may produce the highest responses, whereas the fault on the 

outer race will cause the lowest responses.  

Taking into account the elastic deformation, it is easy to understand the impulsive 

differences between different fault severities. As fault degree increases, the load area will 

decrease while elastic deformation e  will increase, which will result in the growth of 

impulse height. 
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6.3 Signal processing based on kurtogram 

Vibration signals from a defective bearing with a localised fault contain a series of impulse 

responses, which result from the impacts of the defective part(s) with other elements. 

These impulses are generated almost periodically and their characteristics depend on the 

location of the defect, such as on the inner race, outer race or rolling elements.  

The envelope spectrum is a very efficient diagnostic tool for the aforementioned faults, as 

the information about the fault is extracted from the spacing between impulses but not 

from the excited frequencies. The process of obtaining the envelope spectrum is often 

named as signal demodulation. However, the quality of the demodulated signal depends on 

the frequency band selected for the demodulation, which requires two parameters 

bandwidth and central frequency [134].  

Because of the high values it takes at those frequencies where an impulsive bearing fault 

signal is dominant and its theoretical nullity where there is stationary noise only, it makes 

sense to use the SK as a filter function to filter out that part of the signal with the highest 

level of impulsiveness. 

In the case of a rolling element bearing signal ( )x t  modelled as a series of impulse 

responses ( )g t  excited by impulses X  at time k : 

( ) ( ) ( )k k
k

x t g t X    . ................................................................................................ (6.6) 

Then, if an impulsive component ( )x t  is buried in additive stationary noise ( )n t , the 

resulting measurement signal ( ) ( ) ( )y t x t n t   has spectral kurtosis 

 
2

( )
( )

1 ( ) / ( )

x
y

n x

K f
K f

S f S f



 ........................................................................................ (6.7) 

where ( )xK f is the spectral kurtosis of ( )x t  and ( ) / ( )n xS f S f  denotes the SNR. This 

suggests that the optimal filter that minimises the similarity between the filtered 

component and the true noise-free signal is the square root of the spectral kurtosis. 

Following similar lines, the optimum filter, which minimises the SNR of the filtered signal, 

can be selected regardless of its shape. The matched filter is a narrow band filter at the 

maximum value of spectral kurtosis. 

As previously pointed out, the spectral kurtosis, and therefore the optimal filter which can 

be obtained from it, will critically depend on the choice of the STFT window length or, as 
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also stated, on the bandwidth of the band-pass filter that outputs the complex envelope

( , )X t f . One solution is to display the spectral kurtosis also as a function of the latter 

parameter, thus giving rise to a two-dimensional representation called “kurtogram”. The 

equation for the kurtogram based on STFT can be presented as 

4

2
2

( , )
( , ) 2

( , )

n

x

n

X t f
K f n

X t f

   ......................................................................................... (6.8) 

where n denotes the window length of STFT. 

6.4 Simulation study of the kurtogram with bearing vibration signal 

To evaluate the efficiency of the kurtogram in determining optimal filter parameters, four 

signals were generated by the bearing model presented in Chapter 2. They correspond to 

four bearing fault cases of outer race fault, inner race fault, roller fault and a combination 

of the above 3 faults, respectively. The resonance frequency or carrying frequency set in 

the bearing model is around 3.9kHz with a sampling frequency of 50kHz. The impulsive 

rates are 82.5Hz, 134.0 and 48.0Hz, representing faults on the outer race, inner race and 

rolling element respectively.  

 

Figure 6.4 Simulated bearing signals for different fault cases 

(a) Outer race fault; (b) Inner race fault; (c) Roller fault; and (d) Combined fault 
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Figure 6.5 Simulated bearing signals in the frequency domain 

(a) Outer race fault; (b) Inner race fault; (c) Roller fault; and (d) Combined fault 

 

Figure 6.6 Kurtogram of bearing simulation signals 

(a) Outer race fault; (b) Inner race fault; (c) Roller fault; and (d) Combined fault 
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mainly near 4kHz, which is the resonance frequency of the bearing model. To get accurate 

envelope analysis results, it is critical to find out the resonance frequency. However, it is 

difficult to verify the resonance frequency from a practical experiment signal due to the 

complexity of the practical system model. The vibration signal distributes in the whole 

frequency range. Therefore, to develop a method for detecting the frequency band, which 

has the highest signal-to-noise ratio is important for bearing envelope analysis. 

Figure 6.6 gives kurtogram based on the FFT of the bearing simulation signal. From the 

figure, it is obvious that the optimised central frequency of the bandpass filter is 4.1kHz, 

4.1kHz, 3.91kHz, and 7.81kHz, respectively. The optimised central frequency of the three 

signal faults is near the resonance frequency of system 3.9kHz. However, the central 

frequency for the combination of 3 faults is twice that of the system resonance frequency. 

One thing worth mentioning is that it is necessary to add some random noise to the signal 

before computing the kurtogram. Otherwise, the kurtogram cannot find the right central 

frequency. 

 

Figure 6.7 Envelope of simulated bearing single fault signals based on the kurtogram 

(a) Outer race fault; (b) Inner race fault; (c) Roller fault; and (d) Combined fault 
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Figure 6.8 Envelope of simulated bearing combined fault signals based on the 

kurtogram 

Then, the four signals are filtered by the bandpass filter designed above and processed with 

envelope analysis. Figure 6.7 and Figure 6.8 illustrate the envelope of bearing simulation 

signals filtered by the kurtogram optimised filter. Figure 6.7 presents the results of three 

fault signals. It can be seen that the fault characteristic frequencies and their harmonics are 

obvious. The fault frequencies of outer race fault, inner race fault and roller are at 82.5Hz, 

134Hz and 48Hz, respectively. Figure 6.8 displays the result of a combination of 3 faults. 

It is easy to see the three fault frequencies. The result indicates that all of the three kinds of 

fault exist in the signal. 

From all the above simulation results, it is concluded that the kurtogram is effective in 

filter optimisation in bearing signal processing. 

6.5 Test rig facility and fault simulation 

The experimental data analysed in this chapter was collected from the bearing test rig 

illustrated in Figure 6.9. It is composed of a motor, coupling, shaft, bearings and brake.  
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Vibration sensorDC motor Coupling MotorShaft

Bearing Bearing

 

Figure 6.9 Photograph of bearing test rig 

The bearing type is NSK N406 cylindrical roller bearing and its geometric dimensions are 

listed in Table 6.1. One Sinocera piezoelectric accelerometer is mounted on the housing of 

the N406 bearing vertically to measure the vibration. The frequency range of the 

accelerometer is from 0.5Hz to 10 kHz and the sensitivity is 8.08mv/ms2. Defect 

frequencies in the experiment calculated according to Equations (4)-(9) are listed in Table 

6.2. 

Table 6.1 Specification of NSK type N406 cylindrical roller bearing  

Parameter Measurement 

Pitch Diameter 59 mm 

Bore Diameter 30 mm 

Roller Diameter 14 mm 

Roller Number 9 

Contact Angle 0 

 

Table 6.2 Fault characteristic frequencies 

Fault type Defect frequency (Hz) 

Outer race 85.8 

Inner race 139.2 

Roller 49.7 

The experiment was carried out based on ten different rolling bearings. One bearing is 

healthy and was taken as the baseline for comparison. Three bearings have induced outer 
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race faults with three different fault severities, which have constant size but three different 

lengths, 30%, 60% and 100% of the bearing outer race width. In the same way, inner race 

faults and roller faults are induced to the other two groups of bearings, and each group 

includes three bearings for three different fault severity levels. Figure 6.10 gives the 

photograph of defect rolling bearing with 30% roller fault, 60% inner race fault and 100% 

outer race fault, respectively.  

(a) (b) (c) 

 

Figure 6.10 Photographs of fault bearings 

(a) 30% roller fault; (b) 60% inner race fault; and (c) 100% outer race fault 

6.6 Results and discussion 

In this section, experimental data processing results are discussed based on the mechanical 

vibration model. The same baseline signal is applied to the outer race, inner race and roller 

fault for comparison. 

Figure 6.11 shows the raw vibration signals for the baseline, inner race and outer race at 

four kinds of conditions, respectively. It can be seen that the vibration amplitudes of the 

outer race are smaller than the inner race and roller for three kinds of fault severities. In the 

meantime, the vibration amplitude of the roller is higher than the inner race at 100% 

damage but similar at both 30% damage and 60% damage. 

Figure 6.12-Figure 6.14 give the envelope analysis results of three kinds of fault. From the 

figures, it is obvious that the characteristic frequencies and their harmonics are significant, 

which verifies that filter parameters can be optimised by kurtosis maximum principle 

effectively.  

The amplitude of the inner race fault frequency grows with the damage severity while the 

outer race and roller fault do not have such a good trend. Envelope analysis results indicate 

that it can be applied for fault detection and can recognise the fault type by fault 

characteristic frequencies. 
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Figure 6.11. Vibration signals in the time domain 

 

Figure 6.12 Envelope analysis results for outer race defect 

(a) 30% damage; (b) 60% damage; and (c) 100% damage 
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Figure 6.13 Envelope analysis results for inner race defect 

(a) 30% damage; (b) 60% damage; and (c) 100% damage 

 

Figure 6.14 Envelope analysis results for roller defect 

(a) 30% damage; (b) 60% damage; and (c) 100% damage 
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Figure 6.15 Results comparison 

(a) Mean RMS of three tests; and (b) Mean kurtosis of three tests 

Figure 6.15 demonstrates the mean RMS and kurtosis comparison of three tests. The RMS 

value increases greatly with the damage severity and shows an obvious difference between 

three kinds of faults. But 100% damage does not follow the prediction because the motion 

between the bearing components includes slippage. In addition, the kurtosis results can 

also separate the outer race fault. However, the difference is tiny between the inner race 

and roller fault, showing that the RMS is the better choice for fault diagnosis.  

When there is the same size fault on the outer race, inner race and roller, the fault impulse 

amplitude of the outer race is constant and smaller and the waveform impulse is less spiky, 

while the inner race fault frequency is modulated at the shaft frequency and the roller fault 

frequency is modulated at the cage frequency. With the same defect size on the three 

components separately, the outer race impulse has the lowest “peakedness” compared with 

the inner race fault. On the contrary, the roller fault has the largest deformation and should 

have the highest “peakedness” which is not the case in the experimental results. This may 

be caused by the high level of noise in the roller vibration which will impact the kurtosis 

value. 
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The experimental data analysis results show that the RMS and kurtosis values can be used 

to predict bearing fault severity, which provides a decisive reference for taking 

maintenance actions. 

6.7 Summary 

In this chapter, a bearing fault diagnosis approach has been developed by combining the 

TFR based kurtogram with envelope analysis. The kurtogram is utilised to automatically 

select a filter band which has high SNR in the vibration signal for envelope analysis. Then, 

the fault location diagnosis and detection feature is extracted from the envelope spectrum 

of the filtered vibration signal, and the RMS and kurtosis values are used for fault severity 

diagnosis. The method has been confirmed by both simulated and experimental signals. 

Particularly, the both RMS and kurtosis of the optimised envelope signals provides a 

consistent indication of the fault severity for common faults occurring on the outer race, 

inner race and roller of a bearing.  
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Chapter 7  
A robust detector for bearing condition monitoring based on the 

MSB 

The method applied in the last chapter has a significant disadvantage in that it is sensitive 

to random noise and aperiodic impulses which normally occur in practical applications. 

For random noise suppression, averaging is an effective method. However, it is necessary 

to align the phases between multiple segments of data. For example, an encoder signal is 

required to indicate the start point of each revolution in the TSA analysis, which needs 

additional devices to collect the signal and these are sometimes difficult to obtain. To solve 

this problem, a novel MSB based robust detector for bearing fault detection is proposed to 

denoise and extract the modulation fault features in this chapter. Because of its inherent 

noise suppression capability, the MSB allows for the effective suppression of both 

stationary random noise and discrete aperiodic noise. The high magnitude features that 

result from the use of the MSB also enhance the modulation effects of a bearing fault and 

can be used to provide optimal frequency bands for fault detection. The kurtogram is 

generally accepted as a powerful means of selecting the most appropriate frequency band 

for envelope analysis, and as such it has been used as the benchmark comparator for 

performance evaluation in this paper.  
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7.1 Introduction 

Bearings are at the heart of almost every rotating machine, and they have received a lot of 

attention in the field of vibration analysis because they are a common source of machine 

faults [135][136]. For the accurate diagnosis of a bearing fault, a number of techniques 

have been proposed in recent years to detect and identify specific bearing fault features 

(bearing frequencies) from within monitored data. Darlow explored the use of a high 

frequency resonance technique, widely known as envelope analysis [137]. Antoni applied 

cyclostationary spectral analysis [138][139], and cepstrum analysis, bispectrum analysis 

and time-frequency analysis have also been used. Ho and Randall investigated the 

application of self-adaptive noise cancellation in conjunction with envelope analysis to 

remove discrete frequencies masked within bearing vibration signals [140]. Barszcz 

applied the same approach to denoise wind turbine vibration signals for bearing outer race 

fault diagnosis [141]. Sawalhi, Randall and Endo presented an algorithm for enhancing the 

surveillance capability of spectral kurtosis by using the minimum entropy deconvolution 

technique. This technique deconvolves the influence of the transmission path and clarifies 

the impulses, even when they are not separated in the original signal [142]. Zhao applied 

empirical mode decomposition and the approximate entropy method for the severity 

assessment of a spall-like fault in a rolling element bearing [143]. A recent significant 

advance in envelope based rolling element bearing fault detection has been the kurtogram 

[144] and this has received considerable attention in recent months [145][146]. For this 

reason, the kurtogram has been used as the benchmark comparator in this study.  

The researchers above, and more, have achieved considerable progress in improving the 

accuracy of bearing fault detection and diagnosis. Most of the fault detection schemes 

presented in the literature are based on tracking the amplitude of the characteristic fault 

frequency but with little attention given to the utilisation of modulation characteristics or 

noise suppressing, which are inherent in measured signals. Recently, Rehab et al. explored 

using the MSB to extract fault features from the envelope signal, exploiting its noise 

suppression capabilities, and in doing so showed more reliable bearing fault severity 

assessment compared to the power spectrum approach [104] This approach, however, still 

requires optimisation of the filter’s parameters for envelope analysis. In this chapter, a 

more straightforward and robust MSB detector is proposed, which does not rely on 

envelope analysis, and which is shown to provide reliable detection features based only on 

the demodulation and noise suppression characteristics of the MSB. 
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7.2 The modulation signal based detector 

To quantify more accurately the sideband amplitudes, the MSB can be modified by 

removing the substantial influence of carrier frequency ( cf ) components via a magnitude 

normalisation. To differentiate this improvement from the normal MSB, the MSB sideband 

estimator has been abbreviated to MSB-SE [108], defined as follows: 

 
 

 

,
,

,0

MS c xSE
MS c x

MS c

B f f
B f f

B f
  ......................................................................................... (7.1) 

where  ,0MS cB f is the squared power spectrum estimation at 0xf   and is equal to 

 
4

cX f . This is an important property that can be used as the basis for calculation of 

individual sideband amplitudes [108]. 

of

2 of

 

Figure 7.1 MSB showing detector ( )xB f  formed from slices shown along ( )cB f  

Figure 7.1 shows a typical MSB result from a measured signal. It is clearly evident that the 

optimal frequency band for detecting a bearing fault is at a specific value of cf  referred to 

as best
cf , and this band results in a maximum SE

MSB  peak. In this instance, a single value of 

cf , best
cf  gives the most significant result, but it will be shown later that more than one 

value of cf  may give significance peaks at the bearing defect frequency (and its 

harmonics) labelled ‘*’ in Figure 7.1. Based on this approach, fault detection can be 

implemented directly, avoiding the preliminary processing steps associated with the 

selection of the optimal frequency band during conventional envelope calculation 
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[104][134]. In conjunction with the MSB’s noise and impulse interference suppression 

capabilities, this results in a significantly more robust detection method. 

 

Figure 7.2 Flow chart of the robust MSB detector calculation 

To achieve even more robust results, the detector can be further improved based on an 

average of several suboptimal MSB slices such as those with ‘↓’ markers in Figure 7.1, and 

it is this final adaptation that results in what this paper refers to as ‘the robust MSB 

detector’: 
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where K  is the total number of selected cf  suboptimal slices (3, in the case of Figure 7.1), 

the number of which depends on the significance of the peaks themselves. From Figure 

7.1, it is clear that peaks appear at the fault frequency and its first harmonic in the MSB 

detector ( )xB f  of the simulated signal. The detector is calculated based on several cf  

slices, and hence it combines the information of multiple carrier frequencies. In this way, it 

utilises more wideband characteristics of the impulsive excitations due to a bearing defect, 
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which ensures that the results are more robust because of its increased suppression of 

strong interferences that can exist in any individual cf  slice.  

In order to obtain suboptimal cf  slices, the suboptimal sideband estimator  ,SE k
MS c xB f f  

can be determined from the compound MSB slice ( )cB f , calculated by averaging the 

significant MSB peaks  in the direction of the xf increment:  

 2

1
( ) ,

1

SEN
ic MS cB f B f i f

N
 


 ..................................................................................... (7.3) 

where f  is the frequency resolution in the xf  direction. 

In summary, the robust MSB detector can be implemented using four primary steps shown 

in Figure 7.2: 

7.3 Simulation study 

To evaluate the performance of the MSB detector, simulated signals with known white 

noise and impulsive interference levels were used in a comparative study between the 

proposed MSB approach and the identified benchmark method, the kurtogram. Firstly, a 

noise free signal was produced using a nonlinear bearing model [147] that included a 

defect on the outer race, along with nonlinear loading effects. Then, differing levels of 

white noise and aperiodic impulsive interference were added to the signal, thus creating the 

four scenarios detailed in Table 7.1. To quantify noise influences, two means of calculating 

SNR were used, one for the stationary noise and another for the aperiodic impulsive noise 

case. For white noise, SNR is defined as: 

 1010log /s nType 1 SNR P P  ....................................................................................... (7.4) 

where sP  and nP  indicate the power of the signal and noise respectively. And for the 

aperiodic impulsive interference, SNR is: 

 1020log /s nType 2 SNR A A  ..................................................................................... (7.5) 

where sA  and nA  represent the amplitude of the signal and the noise, respectively. 

The study evaluated whether the detector could find bearing fault signatures within the 

noisy signals and thereafter benchmarked the results with those from the typical fast 

kurtogram approach.  
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Table 7.1 Description of the four noise scenarios  

Scenario White noise 
Aperiodic 

interference 

Type 1 

SNR 

value 

Type 2 

SNR 

value 

Low noise signal 

without 

interferences 

Level 1 None -15dB n/a 

High noise 

signal without 

interferences 

Level 2 None -30dB n/a 

Low noise signal 

with low level 

interferences 

Level 1 Level 1 -15dB -22dB 

High noise 

signal with high 

level 

interferences 

Level 1 Level 2 -22dB -48dB 

 

7.3.1 Robustness to white noise  

Figure 7.3 shows the time series and corresponding spectral representations for three 

different simulated outer race fault signals (note the different amplitude scale for the three 

time traces). Figure 7.3(a) shows the waveform of the simulated rolling element bearing 

fault signal without any noise. It comprises three primary frequency response regions 

associated with three resonance frequencies at 3,471Hz, 7,120Hz, and 11,750Hz. Although 

this is simulated data, these 3 frequencies were chosen because they are representative of 

those associated with the dominant vibration modes of the inner race, outer race and 

sensor, in a typical rolling element bearing condition monitoring setup [148]. Figure 7.3(b) 

illustrates the time waveform and the spectrum of the low noise signal without impulsive 

interference. Figure 7.3(c) presents the equivalent for the high noise signal again without 

interference. The SNR, in both cases, is calculated using Equation (7.4). From Figure 
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7.3(b) and (c), it can be seen that for the low noise case, the frequency components around 

the lowest resonance frequency (3,471Hz) are masked by the noise. For the high noise 

case, the first two resonance frequencies are themselves completely buried in the noise. It 

is therefore difficult to locate resonance frequencies and hence to implement accurate fault 

detection if the conventional envelope approach is used. 

 

Figure 7.3 Time waveforms of the simulated signals and their spectra 

(a) No noise; (b) Low noise; and (c) High noise 

If one takes the low noise scenario as an example to describe the process of calculating the 

MSB robust detector, then the steps are as follows. Firstly, calculate the MSB (the FFT 

size is 262144 and the average time is 32) and sideband estimator using Equations (3.16) 

and (7.1). Then, calculate the compound MSB slice ( )cB f  to choose the suboptimal cf  

slices and hence to achieve the result displayed in Figure 7.4(a). The cf  slices marked by 

‘*’ at around 7,000Hz (R2) and 12,000Hz (R3) have in this case been selected for the 

calculation of the MSB detector. Subsequently, the robust detector is calculated using 

Equation (7.2), as shown in Figure 7.4 (b). As a benchmark, the fast kurtogram algorithm 

[149] has also been applied to optimise the filter parameters for a narrowband envelope 
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analysis. The envelope spectrum obtained by the kurtogram is referred to as the kurtogram 

based detector in this paper. The kurtogram optimised filter centre is at 11,719Hz and the 

filter bandwidth is 520.8Hz. Both the MSB and kurtogram-based approaches find the 

highest resonance frequency at around 11,719Hz. However, the MSB detector also finds 

the middle resonance frequency, which the kurtogram does not do, meaning that it is more 

flexible and potentially more capable in that it can detect multiple resonance frequencies, 

whilst the kurtogram can only select one optimal filter band.  

Figure 7.4(b) shows the normalised results of the MSB detector and the kurtogram-based 

detector for the low noise signal. It can be seen that both detectors have distinctive peaks at 

the outer race fault characteristic frequency and its harmonics, indicating that they are 

capable of detecting the bearing fault for the low noise case, although the MSB-based 

detector has lower background noise than that based upon the kurtogram. 
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Figure 7.4 The compound MSB slice and results comparison (low noise, no impulsive 

interference) 

(a) The compound MSB slice ( )cB f ; and (b) Results of the MSB robust detector and 

the kurtogram based detector 
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For the high noise scenario, the compound MSB slice ( )cB f  and the normalised results of 

the two detectors are shown in Figure 7.5. It can be seen from Figure 7.5(a) that there are 

several significant peaks at around 11,800Hz, which is the highest resonance frequency of 

the simulated signal. In contrast, the central frequency optimised by the kurtogram is at 

195.3Hz and the bandwidth is 390.6Hz, which is not the location of a resonance frequency. 

In summary, the MSB detector can still extract the fault feature frequency even if the noise 

is very high, whereas the kurtogram approach does not give any indication of the fault. 

This greater capability of the MSB detector is attributed to its high performance noise 

suppression. 
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Figure 7.5 The compound MSB slice and results comparison (high noise, no impulsive 

interference) 

(a) The compound MSB slice ( )cB f ; and (b) Results of the MSB robust detector and 

the kurtogram based detector  
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7.3.2 Robustness to aperiodic impulsive interference with the presence of white 

noise 

To examine the performance of the detector in the presence of aperiodic impulsive 

interference, a simulated fault signal was produced by adding random impulses to the 

previous low noise signal (again, note the different amplitude scales for the two sets of 

time data). Figure 7.6 and Figure 7.7 show the time waveforms of the simulated signals 

and their spectra. The SNR in the figure was calculated using Equation (7.5).  

For the signal with low levels of amplitude interference in Figure 7.4(a), the optimised 

filter central frequency obtained by the kurtogram is at 11,719Hz and the filter bandwidth 

is 520.8Hz, meaning that the optimised filter is located at the third resonance frequency of 

the simulated signal. However, for the signal with high levels of interference, the optimised 

filter central frequency by kurtogram is at 4,166.7Hz and the filter bandwidth is 8,333Hz, 

which includes the third resonance frequency but has such a wide bandwidth that it results 

in a very low SNR for the filtered signal.  

 

Figure 7.6 Signal waveform and spectra with low level of impulsive interference 
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Figure 7.7 Signal waveform and spectra with high level of impulsive interference 
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Figure 7.8 The compound MSB slice and results comparison (low noise, low level 

impulsive interference) 

(a) The compound MSB slice ( )cB f ; and (b) Results of the MSB robust detector and 

the kurtogram based detector 
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Figure 7.9 The compound MSB slice and results comparison (low noise, high level 

impulsive interference) 

(a) The compound MSB slice ( )cB f ; and (b) Results of the MSB robust detector and 

the kurtogram based detector 

Figure 7.8 and Figure 7.9 show the results of ( )cB f  for both the MSB detector and the 

kurtogram-based detector, for the two levels of impulsive interference. For the low 

interference signal, Figure 7.8 illustrates that both detectors are effective but that the MSB-

based robust detector has lower background noise. For the high interference signal, Figure 

7.9 illustrates that the MSB robust detector still can detect the fault characteristic frequency 

whereas the kurtogram-based detector contains too much noise and is not able to reveal the 

presence of the fault.  

From the simulation studies, it can be concluded that the proposed MSB detector is robust 

to white noise and also to aperiodic impulsive interferences, and that in severe noise cases 

significantly outperforms the kurtogram-based approaches. 

7.4 Two application case studies 

To explore the practical application of the MSB detector alongside the kurtogram-based 

detector, two bearing application cases have been investigated. One is for the bearing in an 



CHAPTER 7 

129 

induction motor and the other is for the bearing in a planetary gearbox. Motor vibration can 

generally be expected to have lower noise and a narrower bandwidth compared to 

planetary gearbox vibration, where signals can be expected to contain higher noise levels 

and a wider bandwidth because of the impulsive excitations caused by the complex gear 

mesh processes. The monitoring of the electric motor driver has always been of interest 

because of its popularity and importance but the condition monitoring of planetary 

gearboxes has also received much attention in more recent years because of their 

prominence in wind turbine applications [55][150].  

7.4.1 Motor bearing fault detection 

7.4.1.1 Experimental setup 

The experimental data of the motor bearing analysed in this paper was collected from the 

bearing test rig illustrated in Figure 7.10. It is comprised of a motor, coupling, intermediate 

shaft, supporting bearings and electrical brake. The vibration sensor was located in the 

vertical direction on the motor drive end bearing housing. Figure 7.11 shows a photograph 

of the tested bearing, with a small seeded outer race defect. 

The tested motor bearing was an NSK Type 6206ZZ deep groove ball bearing with 

geometry listed in Table 7.2. The frequency range of the piezoelectric accelerometer used 

to collect the data was 0.5Hz to 10kHz and the sensitivity was 1.04mV/ms2. The data was 

acquired with a sample rate of 96kHz and 24-bit resolution.  

Given the horizontal orientation of the shafts in the machine, and the minimal axial load 

applied to the test bearing, the contact angle (φ) was assumed to be zero. 
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Figure 7.10 Photograph of the motor bearing test rig 
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Figure 7.11 Photographs of the test bearing with a small seeded outer race defect 

Table 7.2 Specification of NSK Type 6206ZZ deep groove ball bearing 

Parameter Measurement 

Pitch Diameter cD  46.4mm 

Ball Diameter bD  9.53mm 

Ball Number rN  9 

Contact Angle   0˚ 

7.4.1.2 Detection results and discussion 
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Figure 7.12 Waveform of the motor vibration and its spectrum 

(a) Waveform; and (b) Spectrum 
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Figure 7.12 shows the vibration time waveform collected on the bearing test rig, along with 

its associated spectrum. From the vibration spectrum, it can be seen that there are two main 

resonance frequencies at approximately 2.5kHz and 7kHz. The optimised filter central 

frequency from the kurtogram is at 2187.5kHz and bandwidth is 625Hz.  
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Figure 7.13 Signal processing results 

(a) The compound MSB slice ( )cB f ; (b) Result of MSB robust detector; and (c) Result 

of kurtogram based detector 

Figure 7.13 shows the compound MSB slice ( )cB f  and the normalised results of the MSB 

detector. The characteristic frequencies of the tested bearing are marked by different 

colours of dashed line, with if , of , cagef  and bf  indicating the characteristic frequencies 

of faults on the inner race, outer race, cage and ball respectively. The suboptimal cf  slices 

are selected in the range from 6.4kHz to 7.1kHz which corresponds to the second 
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resonance frequency in Figure 7.12(b). From the MSB detector results in Figure 7.13(b), it 

can be seen that there is one distinctive peak at the outer race fault frequency. In addition, 

small peaks appear at the cage fault frequency and its harmonics, but no peaks can be 

observed at the ball fault frequency or the inner race fault frequency. These results 

demonstrate that the outer race fault can readily be detected in the test bearing. The 

presence of the cage fault frequency was unanticipated and may be caused by 

manufacturing effects or inadvertent damage during bearing installation. The kurtogram 

based detector shown in Figure 7.13(c) also provides a clear indication of the bearing outer 

race defect. 

7.4.2 Planetary gearbox bearing fault detection 

7.4.2.1 Experimental setup 

To assess the effectiveness of the MSB detector for use in low SNR conditions, vibration 

signals acquired from a planetary gearbox test system were investigated. The test rig 

shown in Figure 7.14 uses a planetary gearbox with a rated torque of 670Nm and a 

maximum input speed of 2800rpm, with a resulting output speed of 388rpm. The 

schematic in Figure 7.15 illustrates the position of the accelerometer that was mounted on 

the outer housing of the ring gear along with the location of the test bearing. In contrast to 

the outer race fault seeded in the motor bearing, in this test an inner race fault was seeded, 

as shown in Figure 7.16. 
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Figure 7.14 Photograph of the planetary gearbox test rig 

The tested bearing was an SKF Type 6008 deep groove ball bearing with geometry as 

listed in Table 7.3. The linear frequency range of the vibration accelerometer used to 

collect the data was 0.5Hz to 10kHz, with a resonance higher than 35kHz and a sensitivity 
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of 28.7mV/ms-2. The data was again acquired with a sample rate of 96kHz and 24-bit 

resolution. 

Table 7.3 Specification of SKF 6008 deep groove ball bearing 

Parameter Measurement 

Pitch Diameter cD  54mm 

Ball Diameter bD  7.9mm 

Ball Number rN  12 

Contact Angle φ  0˚ 

Bearing 

position
Sensor 

position

Input Output

 

Figure 7.15 Schematic for a planetary gearbox 

Given the horizontal orientation of the shafts in the machine, and the minimal axial load 

applied to the test bearing, the contact angle (φ) was assumed to be zero. 

 

Figure 7.16 Inner race defect on bearing 

7.4.2.2 Detection results and discussion 

Figure 7.17 shows the waveform of the measured vibration signal and its spectrum. From 

Figure 7.17(a), it can be seen that many impulses exist in the vibration signal, generated by 
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the complex rotation and meshing dynamics of the planetary gearbox. Figure 7.17(b) 

shows that there are four possible main resonance frequencies at approximately 1.2kHz, 

2kHz. 6kHz and 9kHz. The optimised filter location from the kurtogram has a central 

frequency of 5703.1Hz and bandwidth of 156.3Hz, which corresponds to the third 

resonance frequency.  
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Figure 7.17 Waveform of planetary gearbox vibration and its spectrum 

(a) Waveform; and (b) Spectrum 

For the planetary gearbox vibration signal analysis, it is necessary to check the nonlinear 

degree of the signal. Because the vibration of the planetary gearbox is quite complex, it 

includes both vibrations of gear mesh and bearing. The collected vibration is the 

superposition of all the components, which can reduce the coupling degree between the 

components. To measure the degree of coupling between three components, a modulation 

signal bicoherence (MSBc) can be used and calculated as follows:  
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The MSBc result of the planetary vibration signal is shown in Figure 7.18. It can be seen 

that the coherence is low when cf  is higher than 6kHz, which means the modulation effect 

is weak and the MSB result is not reliable in this frequency range. Therefore, the highest 

resonance frequency R4 is excluded from the calculation of the MSB detector. 

 

Figure 7.18 MSB coherence of planetary gearbox vibration 

( )cB f  is presented in Figure 7.19(a), and this shows that the selected suboptimal cf  slices 

exist in the range from 1.1kHz to 1.5kHz, which corresponds to the second resonance 

frequency of Figure 7.19(b). The normalised results of the MSB detector are presented in 

Figure 7.19(b). The characteristic frequency positions for the test bearing if , of , bf  and 

cagef  indicate the fault characteristic frequencies of the bearing inner race, outer race, ball, 

and cage respectively. rsf , rscf , and sff  denote the shaft rotational frequency, the 

difference between the shaft rotational frequency and the carrier rotational frequency, and 

the sun gear fault frequency calculated by Equation (7.7) [60] respectively.  

 sf rs rcf K f f   ........................................................................................................ (7.7) 

where K  is the number of planetary gears, and rcf  is the carrier rotating frequency. 
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Figure 7.19 Signal processing results 

(a) The compound MSB slice ( )cB f ; (b) Result of MSB robust detector; and (c) 

Result of kurtogram based detector 

Unfortunately, the bearing outer race fault frequency coincides with the sun gear fault 

frequency, which potentially would make it difficult to distinguish between these two types 

of fault. From the MSB robust detector shown in Figure 7.19(b), it can be seen that there is 

one distinctive peak at the inner race fault frequency of the bearing along with two small 

peaks at its second and third harmonics. This result shows that the inner race fault can be 

straightforwardly detected in the test bearing. Small peaks also appear at the sun gear fault 

frequency or the bearing outer race fault frequency and harmonics thereof. These peaks are 

also unanticipated and may again be due to manufacturing effects or inadvertent 

installation damage. This means that the MSB robust detector can achieve accurate and 

reliable bearing fault diagnosis even in a low SNR, high impact environment such as the 

planetary gearbox vibration. 

From the results of the kurtogram based detector, illustrated in Figure 7.19(c), it can be 

seen that there are numerous frequency peaks associated with the sun gear fault/outer race 
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fault, the inner race fault, and their harmonics. However, it is difficult to identify the 

bearing fault because the amplitudes of the bearing characteristic frequencies are 

significantly smaller than other frequency components such as the sun gear fault 

frequency/outer race frequency. 

7.5 Summary 

Based on the proven performance of the MSB in suppressing random noise and 

decomposing the nonlinear modulation components [40][53][54][145] a novel MSB 

detector has been developed using a number of discrete MSB peaks, which are optimal in 

terms of maximising the modulation contents of bearing fault signals. Simulated signals 

with different levels of white noise and aperiodic impulsive interference have been applied 

to demonstrate the robust performance of the new approach, and its capability has been 

shown to exceed that of the kurtogram-based detector. The application to signals from a 

planetary gearbox shows that the new approach can successfully detect bearing faults in 

circumstances where the signal contains high levels of modulation due to other impact 

phenomena. 
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Chapter 8  
A novel residual sideband approach to the fault diagnosis of a 

planetary gearbox 

This chapter presents a novel approach to the fault diagnosis of planetary gearboxes based 

on the estimation of residual sidebands using MSB. The residual sideband is found to be 

less influenced by gear errors compared with the in-phase sideband due to the 

superposition of concurrent mesh excitations of the gearbox. Therefore, the diagnostic 

feature extracted by applying MSB to the residual sideband can produce an accurate and 

consistent diagnosis. This has been evaluated by both simulation and experimental studies. 

The conventional spectrum analysis was also implemented based on commonly used in-

phase sidebands for the purpose of performance benchmarking. 
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8.1 Introduction 

Planetary or epicyclic gearboxes are widely used for the power transmission of important 

machines such as helicopters, automobiles, aircraft engines and marine vehicles due to 

their large transmission ratios and strong load-bearing capacity. In order to ensure reliable 

operation, their condition monitoring techniques have been investigated for many years. As 

shown in the comprehensive review papers by Lei et al. [58], Samuel et al. [151], and 

Yuksel et al. [152], numerous researches have been carried out on the investigation of 

vibration characteristics for monitoring various faults such as tooth defects including gear 

pitting, crack and wear. In particular, many novel signal processing methods in the time 

domain, frequency domain, time-frequency domain and advanced intelligent methods have 

been applied to analyse the complicated vibration signals for the purpose of suppressing 

random noise and interfering components and hence defining accurate and reliable 

diagnostic features, of which the most representative are the fast dynamic time warping 

[153], spectral kurtosis [154], blind deconvolution denoising [155], ensemble empirical 

mode decomposition [156], adaptive Morlet wavelet and singular value decomposition 

[83], cyclo-stationary analysis [157] and adaptive stochastic resonance signal enhancement 

[158]. Moreover, the majority of these have developed the diagnostic parameters based on 

apparent vibration components which have large amplitudes presenting in vibration 

spectrum and also can be correlated explicitly to fault dynamics. Particularly, studies such 

as in [59][151] have shown that these large spectral components are the in-phase sidebands 

due to the effect of a constructive wave superposition from the concurrent meshing sources 

between the sun and multiple planet gears. 

However, due to common manufacturing errors such as the accumulative pitch deviations, 

eccentricities etc. there will be inherent asymmetry between the multiple meshing sources 

in an operational planetary gearbox. Therefore, the wave superposition will also result in 

observable sidebands at the characteristic frequencies which are different from the in-phase 

sidebands. These sidebands may contain high quality information for diagnostics. 

Unfortunately, they have been overlooked previously because of their small amplitudes.  

In addition, higher order spectrum analysis approaches have also not been applied to the 

vibration signals from planetary gearboxes, although they have been demonstrated to be 

effective for denoising the vibration signals from fixed shaft gearboxes [159] and 

estimating weak sidebands in motor current signals [160]. 
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Therefore, this study will focus on characterising the small sidebands which are usually not 

as noticeable in the spectrum of planetary gearbox vibration. It will show that they contain 

reliable diagnostic information because they are much less influenced by inherent 

manufacturing errors. Firstly, the chapter demonstrates the existence and characteristic of 

these small sidebands by numerical studies. Then, an MSB based approach is applied to 

extract these sidebands accurately which are easily contaminated by random noise due to 

their small amplitudes. Finally, an experimental study is carried out to verify the 

effectiveness and performance of this approach in diagnosing different types of gear faults.  

8.2 Planetary gearbox vibration based diagnosis 

8.2.1 Characteristic frequencies for fault detection 

As shown in Figure 8.1, a common planetary gearbox consists of three planet gears of the 

same size, meshed with one sun gear and ring gear concurrently. The carrier is floating and 

affixed to the output or input shaft by means of splines which allow it to move axially as 

required for uniform load sharing between the three planetary gears. In this chapter, an 

industrial planetary gearbox, detailed in Table 8.1, is focused on for fault diagnosis study. 

As shown in many previous studies, detection and diagnosis can be carried out by 

examining the changes of characteristic frequencies around mesh frequency mf  and its 

harmonics. Considering that there are K number of planetary gears moving with the carrier, 

characteristic frequencies around the meshing frequency can be calculated [58][59] for 

different local faults occurring on the sun gear  

( )m
sf rs rc

s

f
f K f f

z
  - , ............................................................................................... (8.1) 

on the planet gear 

2 2( )m
pf rp rc

p

f
f f f

z
    .............................................................................................. (8.2) 

and on the ring gear 

m
rf rc

r

f
f Kf

z
   ............................................................................................................ (8.3) 

However, as shown in [59][161], only some of these expected sidebands will be apparent 

in the vibration spectrum when a planetary gearbox has faults due to the effects of 

constructive superposition of the vibration waves from the three gear sets, whereas other 
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sidebands are hard to see because of the destructive effect of the superposition, and hence 

the latter have been largely neglected by previous studies when developing methods for 

fault diagnosis.  

 
 

Figure 8.1 Schematic of a planetary gearbox 

Table 8.1 Planetary gearbox specification 

No Gear Teeth Frequency 

1.  Ring  62rZ   0rrf   

2.  3×Planets 26pZ   rpf  

3.  Sun  10sZ   rsf  

4.  Input shaft   rcf  

5.  Output shaft   rsf  

6.  Transmission ratio  7.2  

7.  Maximum torque  670 Nm  

8.  Maximum input speed  2800 rpm  

9.  Maximum output speed 388 rpm  
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8.2.2 Characteristics of residual sidebands 

According to the signal model developed in [59][60][161], a vibration spectrum can be 

simulated for the case of a tooth defect on the sun gear of a typical industrial planetary 

gearbox whose key specification is provided in Table 8.1. Firstly, the spectrum of a single 

pair of gears is presented in Figure 8.2 in order to understand the spectrum characteristics 

for the combination of multiple gear pairs. The spectrum includes the components in the 

frequency range up to the third harmonics of the mesh frequency when a triangle wave was 

employed as the fundamental meshing source and a sinusoidal wave as the excitation of 

accumulative pitch errors of different gears. It shows clearly that different sidebands due to 

the errors are located around the mesh frequency and its 2nd and 3rd harmonics in a nearly 

symmetrical pattern. In particular, the simulation includes the 3rd, 4th , 5th and 7th harmonics 

of the accumulative pitch error on the sun gear to show the characteristics of the 3rd and 6th 

order of sidebands, as predicted by Equation (8.1). As shown by ‘x’,’+’ and ‘*’ markers 

which denote the 3rd and 6th sidebands corresponding to the three mesh frequencies 

respectively. The 1st order sidebands can exhibit relatively symmetrical even if the 

interferences exist between the sideband at 3 sff  of the 1st mesh frequency and the sideband 

at 7 sff  of the 2nd mesh frequency. Meanwhile, the simulation also includes only the 1st 

harmonic component of the error on the planet gear and carrier. However, multiple 

symmetrical sidebands can be observed at ( )m rp rcmf n f f   and m rcmf c f , illustrated 

with ‘o’ and ‘square’ markers respectively, because of the inclusion of phase modulations 

during the simulation. 

 

Figure 8.2 Spectrum of single pair of teeth for gears with errors 
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Figure 8.3 Spectrum of superimposed signal with gear error 

When superposing over three such signals with equal phase differences of 120°, the 

resultant spectrum shows very asymmetrical sidebands. As shown in Figure 8.3, the 

spectral lines with high amplitudes at 1 7m sff f- , 1 6 1m sf rcf f f- , 1 5 1m sf rcf f f- -  etc. 

and at 3 3m sff f  and 3 6m sff f , 3 6m sff f  become larger due to the constructive effect 

of the in-phase superposition between multiple vibration sources, compared with that of 

the single pair of teeth meshing process. This spectral pattern agrees with that predicted in 

previous studies such as [60] [161] for indicating the local fault of the sun gear. However, 

there are still many other observable spectral components which have not been paid 

attention previously. Particularly, the components that are located symmetrically around 

the first and the second mesh frequencies at 1 3m sff f , 1 6m sff f , 2 3m sff f  and

2 6m sff f , illustrated by ‘x’ and ’+’ markers, are also clearly visible. These components 

are well-known diagnostic features which are used widely for the fault diagnosis of fixed 

shaft gearboxes.  

In order to examine the usefulness of these small sidebands in diagnosing faults in a 

planetary gearbox, they are referred to as residual sidebands in this study because they 

result from the incomplete superimposition of the out-phase waves and have negligible 

amplitudes in the spectrum. In contrast, the high amplitude sidebands, such as those around 
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the third mesh frequency at 3 3m sff f  and 3 6m sff f , which have been explored widely 

previously, are referred to as in-phase sidebands. 

 

Figure 8.4 Spectrum change for the case of sun gear fault with gear errors 

In fact, it is straightforward to understand the existence of the residual sidebands. The 

development of the existing theory such as [59] for predicting fault components is based on 

the assumption that the system is symmetrical and meshing between perfecting gears. 

Thus, it will predict zero amplitudes for the residual sidebands. However, considering a 

local fault on any of the gears and inevitable manufacturing errors, the assumption does not 

hold true anymore. Consequently, the superimposition is not impeccable and will result in 

non-zero components of the residual sidebands and at many other frequencies, as shown in 

the magnified spectrum of the middle plots in Figure 8.3. In practice, the system can never 

be symmetrical because of inevitable manufacturing and installation errors. This means 

that both the residual sidebands and the in-phase sidebands coexist in measured signals and 

will be influenced by the errors. 

To examine the influences of the errors on both types of sidebands and show their 

effectiveness for fault diagnosis, further simulations were carried out for three cases, 

denoted as baseline (BL), Fault 1 (F1) and Fault 2 (F2) corresponding to the baseline 

condition and two increments of tooth breakages on the sun gear respectively. Moreover, 
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these three cases all include the same effect of accumulative pitch errors, as shown in 

Figure 8.1. Figure 8.4 shows a comparison of spectra between the baseline and the case of 

F2. The in-phase components, illustrated by ‘*’ markers with high amplitudes, clearly 

show differences between the two cases. Obviously, the differences of the in-phase 

sidebands around 3 mf , which are illustrated by the differences between the two ‘*’ 

markers at the same spectral lines, can be used to differentiate these two cases. In the 

meantime, the residual sidebands, illustrated by the low amplitude arrows in the magnified 

spectrum, also show sufficient differences to make a clear difference between the two 

cases. These demonstrate that both types of sidebands can be good indicators for 

differentiating the faults.  

 

Figure 8.5 Comparison of sideband changes due to faults on sun gear 

(a1) Spectral amplitude at 1 m sff nf ; (b1) Spectral amplitude at 2 m sff nf ; (c1) 

Spectral amplitude at 3 m sff nf ;(a2) Spectral change at 1 m sff nf ; (b2) Spectral 

change at 2 m sff nf ; and (c2) Spectral change at 3 m sff nf . 

To show accurately the performance of using the residual sidebands for diagnosing the 

fault on the sun gear, their amplitudes at up to 2nd order components are extracted from the 

spectrum and compared with those of the in-phase sidebands around the third harmonics. 

Figure 8.5 presents these amplitudes against the fault cases and their relative changes with 

respect to their baselines. It shows that the residual sidebands around the first and the 
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second mesh frequencies increase monotonically with the fault severities, whereas the in-

phase sidebands around the third mesh frequency exhibit a non-uniform change. Moreover, 

the relative changes of the residual sidebands are about five times higher than those of the 

in-phase sidebands. This means that the residual sidebands are more sensitive and reliable 

to the fault changes and give rise to a much better result in detecting and diagnosing the 

fault than the in-phase sidebands. This is mainly because the in-phase superimposition also 

accumulates the effect of manufacturing errors simultaneously while it accumulates the 

effect of faults over the three gear sets. For small changes in sideband amplitudes caused 

by faults, the in-phase sidebands will show a relatively small change. Moreover, the 

changes can be either incremental or decremental, depending on the consistency of phases 

between the sidebands due to errors and due to the fault. On the other hand, because the 

effect of errors is minimised at the residual sidebands, any small changes due to faults will 

show effectively corresponding changes which are both significant and consistent. 

Therefore, the residual sidebands can potentially produce a consistent result in agreement 

with the fault severity and hence can give a more correct diagnosis.  

 

Figure 8.6 Comparison of sideband changes due to faults on one planet gear 

(a1) Spectral amplitude at 1 m rc pff f nf  ; (b1) Spectral amplitude at 2 m rc pff f nf  ;  

(c1) Spectral amplitude at 3 m rc pff f nf  ; (a2) Spectral change at 1 m rc pff f nf  ;  

(b2) Spectral change at 2 m rc pff f nf  ; and (c2) Spectral change at 3 m rc pff f nf  . 
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In the fault case of the planet gear, the residual sidebands are more significant around 

m rcmf f  due to the superimposition effect. As shown in Figure 8.6, their amplitudes close 

to the first, second and third harmonics of the mesh frequencies all show monotonically 

increasing trends. However, the sidebands close to the first one are more symmetrically 

distributed around their carrying frequency, indicating less error influences and hence 

allowing better diagnostic results to be obtained, compared with the other two sets of 

residual sidebands.  

8.2.3 Modulation signal bispectrum 

As discussed previously, the residual sidebands have relatively low amplitudes and hence 

can be easily contaminated by various noises. To extract them this study uses an MSB 

based sideband estimator (MSB-SE), which has been developed recently by the authors 

[162][163] in characterising the effects of modulation signals with small amplitudes. For a 

vibration signal ( )x t  with corresponding Fourier Transform ( )X f , MSB-SE can be 

obtained by 

* * 2( , ) [ ( ) ( ) ( ) ( )] / [| ( ) | ]SE
MS s c c s c s c c cB f f E X f f X f f X f X f E X f  -  ......................... (8.4) 

where the product between the upper sideband ( )c sX f f , the lower sideband ( )c sX f f  

and the normalised carrier component * * 2
( ) ( )/ | ( ) |c c cX f X f X f  allows the sideband effect to 

be combined and quantified without the effect of the carrier amplitude. Moreover, because 

of the average operation, denoted by the expectation operator [ ]E  in Equation (8.4), the 

sideband products which associate with a constant phase value can be enhanced, while the 

noise and interfering components with random phases are suppressed effectively. This 

MSB based approach has been shown to yield outstanding performance in characterising 

the small modulating components of motor current signals for diagnosing different 

electrical and mechanical faults under different load conditions [160][163][164][165]. 

Therefore, it is also evaluated in this study to extract the residual sidebands of vibration 

signal for the purpose of gear fault diagnosis. 

8.3 Experimental setup 

8.3.1 Test facilities 

To verify the effectiveness of using residual sideband based diagnosis, vibration signals 

were acquired from an in-house planetary gearbox test system, as shown in Figure 8.7. The 
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test system consists of a three-phase induction motor of 11kW at 1465rpm, flanged in a 

cantilever type arrangement to a two-stage helical gearbox, the planetary gearbox, two 

flexible tyre couplings, and a DC generator for applying load to the gearbox. The helical 

gearbox is used as a speed reducer with a transmission ratio of 3.6 whereas the planetary 

gearbox is as an increaser with transmission ratio 7.2 so that the system can be loaded 

effectively by the DC motor. 

MOTOR H.G DC- GENERATOR 

Encoder Accelerometer

RESISTOR BANK

Controller

AC Source
Data 

Acquisition 

System 

P.G

 

Figure 8.7 Planetary gearbox test system 

The schematic in Figure 8.7 also shows the position of the accelerometer mounted on the 

outer surface of the ring gear. The shaft encoder at the free end of the induction motor 

produces 100 pulses per revolution for measuring the speed of the system, which is based 

for identifying characteristic frequencies of gearbox vibration. Furthermore, a variable 

speed controller is attached to the test rig between the AC power source and the motor to 

control the speed of the testing system, allowing any specific operating conditions between 

0 to 1465rpm and between 0% and 90% of the motor full load to be programmed. 

8.3.2 Data acquisition 

To examine the influence of the operating condition on fault diagnosis performance, the 

tests were carried out when the speed of the AC motor was at 40% of the full speed. 

Considering the transmission ratios, the planetary gearbox will operate at 80% of its full 

speed correspondingly. At each speed, the system is loaded under five successive loads 

(0%, 25%, 50%, 75% and 90% of the full load). These operating conditions will allow an 

exploration of different load influences on vibration contents for developing a reliable 

diagnostic method.  

The vibration is measured by a general purpose accelerometer with a sensitivity of 100 

mv/g and frequency response ranges from 1Hz to 10kHz. All of the data were logged 
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simultaneously by a multiple channel, high-speed data acquisition system operating at 

100kHz sampling rate and 16-bit resolution.  

8.3.3 Gear faults 

Two tests were carried out to examine the tooth faults on the sun and planet gears 

respectively. The first test is for testing different sizes of defects on one tooth of the sun 

gear and the second is for testing different sizes of defects on the planet gear tooth. A 

baseline measurement was firstly carried out when the gears were healthy i.e. without any 

defects induced. Then, the second measurement was completed when a defect on the sun 

gear was created manually by damaging a single surface of the tooth by about 30% of the 

full tooth width. The third measurement was for the case of increasing the defects up to 

60%. For the convenience of discussion, these three cases are denoted as BL, F1 and F2, 

respectively. Figure 8.8(a) shows the two defects respectively. 

Likewise, one of the planetary gears was also tested under its baseline and two increments 

of tooth defect. Figure 8.8(b) shows the two defects respectively, which were simulated on 

one side of the gear. In addition, both of the tests for the sun gear fault and planet gear fault 

were conducted on the same gearbox casing but with two different sets of gears for 

accurate comparison. 

  

Figure 8.8 Tooth defects simulated on the sun and planet gears 

(a) Sun gear defects; and (b) Planet gear defects 

(a) 

 

(a) 

(b) 

 

(b) 
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8.4 Diagnostic results and discussion 

8.4.1 Spectrum features of vibration signals 

Figure 8.9 shows the typical spectra from three cases of the sun gear test. It can be seen 

that three distinctive peaks close to the first three mesh frequencies appear at m rcf f , 

2 m rcf f-  and 3 mf respectively, which agrees with the model prediction and the finding of 

previous studies [59][60][161]. However, there are also many distinctive peaks between 

two mesh frequencies. For example, the components at 62 1sfm rcff f  , 72 sfm ff   etc. 

should not appear for a healthy planetary gearbox. However, according to the simulation 

studies in Section 8.2, these peaks may indicate that the gearbox has significant 

manufacturing and installation errors. This means that the diagnosis based on the in-phase 

sideband may not be accurate, which can be demonstrated by examining the changes at 

3 3m sff f  and 3 6m sff f  between the three cases.  

 

Figure 8.9 Spectrum for different fault cases of the sun gear at 1114 rpm and 75% 

load 

To examine the changes of the residual sidebands, their amplitudes, including those of the 

in-phase components, are extracted and presented in Figure 8.10. Because of the difference 

of frequency characteristics due to vibration transfer paths, the spectrum shows very low 

amplitude below 1 mf , which is also the general feature of acceleration responses. So the 
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residual sidebands around 1 mf are not explored because of their low SNRs. Based on the 

changes of these sidebands, it can be found that the amplitudes of the second-order residual 

sidebands around 2 mf  and those at 2 mf may be good indicators of the fault severity as 

their amplitudes show an increasing change which agrees with the fault severities under 

high load conditions. 

 

Figure 8.10 Spectral amplitude comparison between the cases of sun gear faults 

(a) Spectral amplitudes at mesh frequencies; (b) Lower sidebands at 2 mf ; (c) Higher 

sidebands at 2 mf ; (d) Lower sidebands at 3 mf ; and (e) Higher sidebands at 3 mf . 

In contrast, the amplitudes of other sidebands and mesh components exhibit high 

fluctuations between fault cases and loads, so they cannot be used for obtaining a 

consistent diagnostic result. In particular, the in-phase sidebands around 3 mf  have higher 

amplitudes but show small relative changes between different fault cases and load 

conditions. It means that they cannot be effective indicators of the faults. 

In general, the spectrum analysis shows that the residual sidebands allow slightly better 

diagnostic results, compared with the in-phase sidebands. However, as shown in Figure 

8.10 (b) and (c), these residual sidebands still cannot differentiate F1 from the baseline or 
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make consistent separation appropriately because of their low amplitudes and high noise 

influences.  

8.4.2 MSB features of vibration signals 

 

Figure 8.11 MSB results for different cases of the sun gear tests under 75% load 

(a) MSB slices around 2 mf  for baseline; (b) MSB slices around 2 mf  for sun gear 

Fault-F1; and (c) MSB slices around 2 mf  for sun gear Fault-F2. 

To improve the diagnostic results, the MSB analysis is applied to corresponding signals. 

Figure 8.11 shows a typical MSB result for three cases of sun gear conditions under 75% 

load. To show a clear change of the residual sidebands around mesh frequency 

2 313mf Hz , MSB and its corresponding coherence results are presented in the 

bifrequency domain in the region of 2 1 313 1c mf f Hz    and 100sf Hz  to include the 

sidebands up to 6 sff . It can be seen in Figure 8.11 that the magnitude of many MSB peaks 

increases with the fault severities. In particular, peaks at bifrequencies (2 ,5 )m sff f  and 



CHAPTER 8 

153 

(2 ,5 )m rcf f  show very distinctive amplitudes. In addition, they also vary consistently with 

the faults. However, these two peaks are also the in-phase sidebands and influenced more 

by errors, which will be shown in further content. Therefore, they are not considered in this 

study. Instead, it is the residual sidebands at (2 ,3 )m sff f  and (2 ,6 )m sff f  that are interesting 

in this study for diagnosing the fault severity and location. As illustrated by the size of the 

arrows, although these sidebands have small amplitudes, they show consistent changes 

with the sizes of faults induced. Furthermore, these small amplitudes are fully supported by 

the high amplitudes of their corresponding coherence results. 

Moreover, these changes can show a clear difference between the F1 and baseline, which 

could not be separated based on the spectral amplitudes, as shown in Figure 8.11. This 

demonstrates that MSB analysis allows more accurate sideband estimation, resulting from 

its high performance of noise suppression. 

8.4.3 Diagnosis of sun gear faults  

To explore the performance of the residual sidebands obtained by MSB analysis, the peak 

values at the corresponding characteristic frequencies for planetary gearbox diagnosis are 

extracted from MSB results and presented in Figure 8.12. From the results of residual 

sidebands obtained from the MSB slice at 2 mf , it can be seen that the amplitudes at the 

sun gear fault frequency sff  show a good increasing trend with loads, which agrees with 

the load characteristics of gear transmissions. Moreover, these amplitudes show clear 

incremental differences between three tested cases. Therefore, they can be used for 

obtaining fault diagnosis reliably. 

Meanwhile, the amplitude changes for other characteristic frequencies are also provided to 

assure the diagnostic results. These changes exhibit high fluctuations with the fault 

progression and the load increases, which are not consistent with the gear dynamic 

characteristics in that the fault usually causes higher vibrations and also increases with 

load. Therefore, they cannot be used to indicate the corresponding faults but are caused by 

refitting errors.  

Therefore, the fault location can be identified by checking the feature that the increase in 

residual sidebands occurs over several different loads simultaneously. 

For performance comparison, the results from in-phase sidebands around 3 mf are also 

presented in Figure 8.13. As shown by the amplitudes at sff , these in-phase sidebands 
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cannot indicate the incremental changes caused by the faults consistently, which agrees 

with the results from the simulation in Section 8.2.  

 

Figure 8.12 MSB diagnosis results of the sun gear faults from the sidebands around 

2 mf  

 

Figure 8.13 MSB diagnosis results of the sun gear faults from the in-phase sidebands 

around 3 mf  
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8.4.4 Diagnosis of planet gear faults 

From the above discussion and diagnostic results, it can be concluded that the residual 

sidebands based method is reliable for planetary gearbox diagnosis. To further evaluate its 

performance, the method is also applied to the datasets from the planet gear test. Figure 

8.14 shows the spectrum of the vibration signals for the three cases of planet gear fault. 

Compared with the spectrum in Figure 8.9, they show very different spectral 

characteristics. Particularly, the spectral amplitudes at 2 6 1m sf rcf f f  , 2 7m sff f  are 

significantly lower than those in Figure 8.9. This indicates that this gear set may have a 

lower error distribution relating to the sun gear, even though the results from the 

conventional spectrum based method cannot give a correct diagnostic result that agrees 

with the fault severities induced as explained in Section 8.3.3. 

 

Figure 8.14 Spectrum for different fault cases of the planet gear at 1108 rpm and 

75% load 

Figure 8.15 presents the MSB based diagnostic results obtained from the residual 

sidebands around 1 mf , rather than that of 2 mf  which is used for diagnosing the sun gear 

fault case in Section 8.4.3. This is because these sidebands exhibit the features of residual 
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sidebands much more, i.e. lower amplitudes and less sensitivity to the gear errors. 

Moreover, they also have less interfering components compared with those around 2 mf . 

As shown in the figure, the MSB peaks at planet gear fault frequency pff  show results 

which increase with fault severity and load, resulting incorrect diagnostic results. In the 

meantime, the sidebands at rpf  also exhibit an increasing change, which can be a 

secondary feature for the fault on the planetary gear. However, the amplitudes of other 

characteristic frequencies show increasing or decreasing changes with loads and fault 

severities which cannot be used to indicate the faults corresponding to the characteristic 

frequency. 

On the other hand, the in-phase sidebands around 3 mf , shown in Figure 8.16, are also able 

to separate the faults only when the faults become serious i.e. when the effect of gear error 

is less than that of the planet gear fault case. However, they cannot separate the smaller 

fault. This further proves that the residual sidebands integrating with MSB analysis can 

provide more reliable and accurate diagnostic information than the in-phase sidebands.  

 

Figure 8.15 MSB diagnosis results for different planet gear faults from the residual 

sidebands around 1 mf  
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Figure 8.16 MSB diagnosis results for different planet gear faults from the in-phase 

sidebands around 3 mf  

8.5 Summary 

Residual sidebands found in spectrum result from the imperfect superposition of multiple 

mesh sources in an operational planetary gearbox with inherent errors. Although their 

amplitudes are relatively small compared with those of the in-phase ones, they are much 

less influenced by the gear errors. Incorporated with MSB, these small sidebands can be 

estimated with a good degree of accuracy, which leads to more accurate and consistent 

diagnostic results. Both simulation and experimental results have shown that this residual 

sideband based method can provide correct and hence reliable diagnostic results for 

different sizes of faults on either the sun gear or the planet gear under different loads. On 

the other hand, the in-phase sidebands can give correct diagnostic results only when the 

fault amplitude is larger than the effect of errors under high load operations. In addition, it 

also shows that the MSB based method outperforms the conventional spectrum analysis 

significantly for diagnosing faults in planetary gearboxes. 
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Chapter 9  
Diagnosing combined faults in a planetary gearbox 

This chapter presents a novel method for diagnosing the combined faults of the bearing 

and the sun gear in a planetary gearbox. Vibration signals measured on the gearbox 

housing exhibit complicated characteristics because of multiple modulations due to 

concurrent excitation sources, signal paths and inevitable noise. To separate these 

modulations accurately, MSB analysis is applied to achieve a sparse representation for the 

complicated signal contents, which allows for the effective enhancement of various 

sidebands for extracting the diagnostic information. The proposed method has been 

applied to diagnose an industrial planetary gearbox in which coexists both a sun gear fault 

and bearing inner race fault (two kinds of bearing fault severities). The gearbox was 

operated under different load and speed conditions.  
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9.1 Introduction 

There are some studies on combined fault diagnosis of bearing and gear signals or bearing 

fault diagnosis in a gearbox. Sawalhi et al. [166] proposed a method based on the TSA. 

Firstly, it isolates and then removes the deterministic components corresponding to each 

gear in the system by synchronous averaging, leaving a residual stochastic signal which 

should be dominated by bearing faults in some frequency bands. Then, the residual signal 

is applied to cepstrum pre-whitening for bearing fault detection. Vishwash et al. [167] used 

a multi-scale slope feature extraction technique, which is based on wavelet multi-resolution 

analysis, discrete wavelet transform (DWT) and wavelet packet transform (WPT), for fault 

diagnosis of gears and bearings. For planetary bearing fault diagnosis, Bonnardot and 

Randall et al. [168] presented an enhanced unsupervised noise cancellation that uses an 

unsupervised order tracking algorithm to perform the noise cancellation in the angular 

domain. To extract fault features of the rolling element bearing from the masking faulty 

gearbox signals, Tian et al. [169] explored a method which combines WPT, Pearson 

correlation coefficient and envelope analysis for bearing and gear fault detection, but did 

not consider different fault levels and operating conditions. Elasha et al. [170] developed a 

method for defective bearings in a planetary gearbox by applying an adaptive filter, 

spectral kurtosis and envelope analysis to both AE and vibration signals. These efforts in 

improving data quality have shown different degrees of success in diagnosing fault types 

and severities. 

However, little attention has been paid to multiple faults occurring concurrently, with 

different defect levels and under various operating conditions, which are more significant 

as the structures of rotating machinery become of larger scale, of higher speed, and more 

complicated [171]. In addition, these studies have usually focused more on noise reduction 

and feature extraction but with limited efforts have been made utilising of multiple 

modulation characteristics to extract the diagnostic information.  

To fill these gaps, this chapter presents a new method for combined fault detection of gear 

and bearing based on MSB-SE analysis of vibration signals, which has been demonstrated 

to be particularly effective in highlighting sidebands and hence diagnosing faults on gears 

only [105].  
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9.2 Theoretical background for diagnosing combined faults 

9.2.1 Spectrum features of vibration signals 

Figure 9.1 shows the typical spectra for the three cases under the same load. They exhibit 

complicated patterns and high density of the spectral component, which needs careful 

examination to find the components of interest. Three distinctive peaks close to the first 

three mesh frequencies appear at m rcf f , 2 m rcf f-  and 3 mf respectively, which agrees 

with the model prediction and that of previous studies [59][60][161]. However, there are 

also many distinctive peaks between two mesh frequencies. For example, the components 

at 2 6 1m sf rcf f f- - , 2 7m sff f  etc. should not appear for a healthy planetary gearbox. The 

presence of these peaks may be from gearbox manufacturing and installation errors. The 

green dashed lines show the bearing inner race fault frequency and its harmonics. It is 

obvious that their amplitudes are quite small compared with the other components. This 

makes it difficult for reliable bearing fault diagnosis. Therefore, the modulation effects 

between the bearing fault frequency and other characteristic frequencies such as rsf  and 

rcf are used for bearing fault diagnosis. 

 

Figure 9.1 Spectra for different fault cases of the gearbox at 1115 rpm and 75% load 
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9.2.2 MSB features of vibration signals 

 

Figure 9.2 MSB results for different cases of the tests under 75% load 

 

Figure 9.3 MSB slice for different cases at 4c if f  

Figure 9.2 shows typical MSB results for the three cases of test under 75% load. To show a 

clear change of the residual sidebands around the harmonic of the mesh frequency

2 313mf Hz , MSB and its corresponding coherence results are presented in the 

16.7223 33.4446 50.1669 66.8892 83.6115 100.3338 117.0561
0

0.005

0.01

    

MSB slice for load 1 at fc=4Fi=532.3Hz

M
a
g
.(

m
/s

2
)

16.3803 32.7606 49.1408 65.5211 81.9014 98.2817 114.6619
0

0.005

0.01

    

MSB slice for load 3 at fc=4Fi=521.5Hz

M
a
g
.(

m
/s

2
)

15.2728 30.5456 45.8185 61.0913 76.3641 91.6369 106.9097
0

0.005

0.01

    

MSB slice for load 5 at fc=4Fi=486.2Hz

Frequency(Hz)

M
a
g
.(

m
/s

2
)

 

 
Healthy

CbFault1

CbFault2



CHAPTER 9 

162 

bifrequency domain in the region of 2 1 313 1c mf f Hz     and 100sf Hz  to include the 

sidebands up to 6 sff .  

Figure 9.3 illustrates the MSB slices at 4c if f  for bearing fault detection. The pink, green 

and black arrows show the sidebands at rcf , rsf  and sff respectively. These sidebands 

show differences between the baseline, small bearing inner race defect and large bearing 

inner race defect cases.  

9.3 Experimental setup 

To verify the effectiveness of MSB-SE based diagnosis, vibration signals were acquired 

from an in-house planetary gearbox test system as shown in Figure 9.4. The maximum 

torque of the planetary gearbox is 670Nm, the maximum input speed is 2800rpm and the 

maximum output speed is 388rpm. The maximum speed of the motor is 1470rpm. The 

helical gearbox is used as a speed reducer and the transmission ratio is 3.6. The planetary 

gearbox is used as a speed increaser and the transmission ratio is 7.2. The maximum speed 

of the DC generator is 1750rpm. Overall, the maximum speed of the DC generator limits 

the operating speed of the AC motor. Considering the safety of the system, the maximum 

speed of the experiment is limited to 80% of the DC generator’s maximum speed. 

Therefore, the corresponding maximum speed is at 40% of the motor’s full speed. The 

schematic in Figure 9.5 shows the position of the accelerometer that was mounted on the 

outer surface of the ring gear and the position of the studied bearing.  

DC 

Generator

Planetary 

gearbox

Helical 

gearbox
Motor

Vibration 
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Figure 9.4 Photograph of planetary gearbox test rig 

In the experiment, the planetary gearbox operates at 80% of its full speed under 5 load 

conditions (0%, 25%, 50%, 75% and 90% of the full load). The load setting allows fault 

diagnoses to be examined with variable load operations, which are the cases for many 
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applications such as wind turbine, helicopters etc. The vibration is measured by a general 

purpose accelerometer with a sensitivity of 31.9 mv/(ms-2) and frequency response ranging 

from 1Hz to 10kHz. All of the data were logged simultaneously by a multiple-channel, 

high-speed data acquisition system with 100kHz sampling rate and 16-bit resolution. 

 

Figure 9.5 Schematic for a planetary gearbox 

 

Figure 9.6 Tooth defects simulated on the sun gear and two kinds of inner race defect 

on deep groove ball bearing 

Table 9.1 Specification of the 6008ZZ deep groove ball bearing 

Parameter  Measurement 

Pitch Diameter 54 mm 

Ball Diameter 7.398 mm 

Ball Number 12 

Contact Angle 0 

Three cases of test were carried out to examine the combined faults. The first is the healthy 

case, in which there is no defect on either the gear or the bearing. The second is for the 

combined fault of a small bearing inner race defect and sun gear tooth defect. The third is 

for the combined fault of a large bearing inner race defect and sun gear tooth defect. For 

convenience of discussion, these three cases are denoted as Healthy, CbFault1 and 
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CbFault2, respectively. Figure 9.6 shows the defects on the sun gear and bearing inner 

races. 

The experiment bearing is located on the output shaft of the planetary gearbox, which is 

close to the sun gear. It is a 6008ZZ deep groove ball bearing and its geometric 

dimensions, which are needed for fault frequency calculation, are listed in Table 9.1. 

9.4 Combined fault diagnosis at high speeds  

Gearboxes probably work under different speeds. To simulate different work conditions, 

two kinds of speeds are applied during the experiment. The sun gear fault is diagnosed 

with the sidebands around mesh frequencies. The bearing fault is detected with the 

sidebands of two kinds of carrier frequencies: one is the gear mesh frequency and another 

is the bearing fault frequency.  

9.4.1 Diagnosis of sun gear fault 

The diagnostic result of the MSB for the sun gear fault is presented in Figure 9.7. From the 

MSB results obtained from the MSB slice at 2 m rcf f , it can be seen that all of the fault 

frequencies and rotational frequencies show good increasing trends. The diagnostic results 

for the sun gear are presented in Figure 9.8. From the results of the residual sidebands 

obtained from the MSB slice at 2 m rcf f , it can be seen that only the amplitudes at the sun 

gear fault frequency sff  show a good increasing trend with loads, which agrees with the 

load characteristics of gear transmissions. Moreover, these amplitudes show clear 

incremental differences between three tested cases under high load.  

The corresponding MSB coherence results are printed in Figure 9.9, which can be used to 

assure the reliability of the MSB-SE results. From the figure it can be seen that the MSB 

coherences are low at the planet gear fault frequency pff  and the ring gear fault frequency

rpf , which indicates that there is no significant modulation phenomenon at these two 

sidebands. Also, it means that there is no fault on the planetary gear or ring gear. 

Meanwhile, the amplitude changes for other characteristic frequencies are also provided to 

assure the diagnostic results. These changes exhibit high fluctuations with the fault 

progression and load increases, which are not consistent with the gear dynamic 

characteristics in that the fault usually causes higher vibrations and also increases with 

load. Therefore, they cannot be used to indicate that the corresponding faults are only 
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caused by refitting errors. The fault location can be identified by checking the feature that 

the increase in residual sidebands occurs over several different loads simultaneously. 

 

Figure 9.7 MSB diagnosis results of the sun gear faults using the slice at 2c m rcf f f   

 

Figure 9.8 MSB-SE diagnosis results of the sun gear faults using the slice at 

2c m rcf f f   
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Figure 9.9 MSB-Coh. results of the sun gear faults using the slice at 2c m rcf f f   

9.4.2 Diagnosis of bearing fault based on fm 

The bearing characteristic frequencies can be modulated by the gear mesh frequency 

during the transmission from the vibration sources to the gearbox house. Therefore, it is 

possible to detect the bearing frequencies around the gear mesh frequency and its 

harmonics in theory. To evaluate this method, the bearing fault detection is investigated 

using the sidebands around the gear mesh frequency and its harmonics. Figure 9.10 and 

Figure 9.11 show the MSB-SE and MSB coherence results obtained from the slice at 4 mf , 

respectively. Although the MSB coherence results show that all the feature frequencies 

have high amplitudes, only the amplitudes of sidebands at the bearing inner race fault 

frequency if  show good increasing trends with the load. This means that the defect on the 

bearing inner race can be detected. However, the two kinds of inner race fault severities 

cannot be separated. 
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Figure 9.10 MSB-SE diagnosis results of the bearing faults using the slice at 4c mf f  

 

Figure 9.11 MSB-Coh. results of the bearing faults using the slice at 4c mf f  
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9.4.3 Diagnosis of bearing fault based on fi 

 

Figure 9.12 Averaged MSB-SE diagnosis results of the small bearing faults using the 

slices at c if f  and 4c if f  

 

Figure 9.13 Averaged MSB-Coh. results of the small bearing faults using the slice at 

c if f  and 4c if f  
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From the spectrum in Figure 9.1 it can be seen that the characteristic frequency of bearing 

fault and its harmonics suffer interference from the complex gearbox frequency 

components. The frequency amplitudes will be greatly reduced, which is not conductive to 

bearing fault diagnosis. Therefore, only the harmonics with high coherence values will be 

selected for bearing fault diagnosis.  

In this section, MSB slices at c if f  and 4c if f  are selected for fault detection because 

of their high coherences. The averaged MSB-SE and MSB coherence results are presented 

in Figure 9.12 and Figure 9.13, respectively. From these two figures, it can be seen that the 

sidebands at rcf  can separate the small inner race fault from the larger one, while the 

sidebands at rpf  only show better results under the high load conditions where the 

modulations are stronger. 

9.5 Combined fault diagnosis at low speeds  

9.5.1 Diagnosis of sun gear fault 

The diagnostic results of MSB, MSB-SE and MSB coherence for the sun gear fault are 

presented in Figure 9.15, Figure 9.15 and Figure 9.16, respectively. From the MSB results 

obtained from the MSB slice at 2 m rcf f , it can be seen that all of the fault frequencies 

and rotational frequencies show good increasing trends. From the MSB-SE results shown 

in Figure 9.15, it can be seen that only the amplitudes at sun gear fault frequency sff  and 

shaft rotational frequency rsf  show good increasing trends with loads, which agrees with 

the load characteristics of gear transmissions. Figure 9.16 shows that the MSB coherence 

has high amplitudes at sff  and rsf , which indicates that the modulation effect is stronger 

at these frequencies and the results are more reliable. In the experiment, only the sun gear 

has a fault. The MSB-SE results give clear indication of sun gear fault while the MSB 

results give fault feature of all fault frequencies. Therefore, comparing the diagnostic 

results of the MSB and the MSB-SE, it can be concluded that the MSB-SE is more reliable 

because it has removed the effect of the meshing frequency which has high amplitude but 

contains little fault information. Moreover, these amplitudes show clear incremental 

differences between the three tested cases under high loads. Therefore, they can be used for 

obtaining fault diagnosis reliably. 
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Figure 9.14 MSB diagnosis results of the sun gear faults using the slice at 

2c m rcf f f   

 

Figure 9.15 MSB-SE diagnosis results of the sun gear faults using the slice at 
2c m rcf f f   
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Figure 9.16 MSB-Coh. results of the sun gear faults using the slice at 2c m rcf f f   

9.5.2 Diagnosis of bearing fault based on fm 

 

Figure 9.17 MSB-SE diagnosis results of the bearing faults using the slice at 4c mf f  
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Figure 9.18 MSB-Coh. results of the bearing faults using the slice at 4c mf f  

Figure 9.17 and Figure 9.18 show the MSB-SE and MSB coherence results obtained from 

the MSB slices at 4 mf , respectively. From Figure 9.17, it can be seen that the amplitudes 

of sidebands show good increasing trends with the load at the inner race bearing fault 

frequency. It could separate the small and large inner race faults at high load conditions. 

Although the coherence amplitudes are not as high as those in gear fault detection, they are 

acceptable because the slippage in the bearing can influence the coherence amplitudes. 

9.5.3 Diagnosis of bearing fault based on fi 

In this section, the MSB slice at 3c if f  is selected for fault detection because of its high 

coherences. The MSB-SE and MSB coherence results are presented in Figure 9.19 and 

Figure 9.20, respectively. From the figures, it can be seen that the sidebands at rcf  and if  

can separate the small inner race fault from the larger fault.  
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Figure 9.19 MSB-SE diagnosis results of the bearing faults using the slice at 3c if f  

 

Figure 9.20 MSB-Coh. results of the bearing faults using the slice at 3c if f  
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9.6 Summary 

In this chapter, a combined fault diagnosis method based on MSB-SE is proposed for 

detecting and diagnosing the combined faults of the bearing and gear in a planetary 

gearbox. The sideband extracted by MSB-SE at the MSB slices relating to characteristic 

frequencies contain more information on bearing and gear faults than MSB, because it has 

removed the influence of carrier frequency (e.g. gear mesh frequencies). Reliable results 

are obtained by averaging multiple slices of MSB-SE to minimise complicated 

interferences and noises from the concurrent sources and path distortions in a planetary 

gearbox. 

The proposed method was verified with experimental vibration signals from a planetary 

gearbox with combined gear and bearing faults. The diagnostic results show that not only 

the types of combined faults (defects on bearing inner race and tooth breakages of sun 

gear) but also the severity of the two bearing faults can be separated successfully under 

various load and speed conditions. 
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Chapter 10  

Conclusions and future work 

This chapter summarises the achievements of the research work and explains how the 

objectives stated in Chapter 1 were achieved. A summary of the author’s contributions 

to knowledge is also included. Finally, recommendations for the continuation of this 

vibration signal processing research are presented. 
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10.1 Review of objectives and achievements 

The purpose of this research is to develop improved vibration signal analysis 

technologies for reliable condition monitoring and fault diagnostics of bearings and 

gearboxes. The research has focused on the refinement of a number of typical signal 

processing algorithms so that they can achieve simultaneous noise reduction and feature 

extraction in noise contaminated and complicated vibration signals.  

All the proposed objectives of this research programme have been fulfilled. The work 

performed in obtaining these objectives is summarised according to the order in Section 

1.5. 

Objective 1: Review the commonly used vibration signal processing techniques for 

machinery condition monitoring and fault diagnosis. 

Achievement 1: Representative signal processing techniques for machinery fault 

diagnosis are reviewed according to historic progress of the machinery condition 

monitoring, which has identified that ANC, ALE, TFR, Wavelet transform and 

kurtogram adaptive wavelet are representative techniques for achieving either noise 

suppression or signature enhancement, whereas TSA and bispectrum analysis allows 

for simultaneous noise reduction and signature enhancement which is the paradigm 

identified in this thesis to be focused on in improving the signal processing techniques.  

Objective 2: Investigate the vibration signal models of gear defects, bearing defects 

and the combined faults to study the fault characteristics and provide the primary bases 

for signal processing. 

Achievement 2: Vibration signal characteristics for bearing faults, gear faults and 

combined faults are studied based on fault generation mechanisms: kinematic and 

dynamic nonlinear couplings. It has understood that all the resulted vibration signals 

exhibit periodic, impulsive and modulating phenomena, which are important bases for 

further improving signal processing and feature extraction methods. 

Objective 3: Develop optimal impulse enhancement methods based on ALE and 

wavelet analysis techniques to improve the SNR of vibration signals for gearbox fault 

diagnosis. 

Achievement 3: ALE has been optimised upon the noisy vibration signals for the fault 

detection and diagnosis of a two-stage helical gearbox. TSA is used to suppress the 
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random noise firstly and then applying ALE is to reduce the continuous mesh 

components by using minimising wavelet entropy difference for optimal filter selection, 

which allows the impulsive features to be enhanced significantly. In this way, the 

incipient tooth damage fault can be detected reliably. 

Objective 4: Investigate the kurtogram analysis and develop a filter for obtaining an 

optimal envelope that enhances the impulsive components due to bearing defects. 

Achievement 4: An effective adaptive filter technique has been developed by 

combining SK with envelope analysis for rolling bearing fault detection and diagnosis. 

The adaptive filter is applied to improve the SNR. The filter parameters including 

bandwidth and central frequency are optimised by a maximal SK criterion. The 

effectiveness of the proposed method has been evaluated based on comprehensive 

experimental datasets from three types of faults and three levels of damage severities. 

The diagnostic results show that not only the types of fault can be identified correctly 

but also the severity is estimated with a good degree of accuracy. 

Objective 5: Develop effective approaches and algorithms for planetary gear fault 

detection and diagnosis based on MSB analysis to utilise the modulating characteristics 

of signals. 

Achievement 5: Based on vibration generation and propagation mechanisms in a 

planetary gearbox, an MSB based residual sideband analysis approach is developed. 

Both simulative and experimental results have shown that this new approach can 

provide correct and hence reliable diagnostic results for different sizes of faults on 

either the sun gear or the planet gear under different loads.  

Objective 6: Propose a signal processing method for diagnosing the combined fault on 

both the gear and bearing through MSB analysis based on the multiple and asymmetric 

modulating characteristics. 

Achievement 6: A combined fault diagnosis method based on MSB-SE is developed 

for monitoring faults on both the bearings and gears in the planetary gearbox. It 

matches and averages multiple MSB slices that correlate to fault characteristic 

frequencies for obtaining more reliable diagnostic features. The verification with 

experimental data from the planetary gearbox shows that not only the types of the 

combined faults: defects in bearing inner race and tooth breakages of sun gear can be 
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separated but also the severity of the two faults can be estimated successfully under 

different load conditions. 

10.2 Conclusions 

Based on the investigations described in the former chapters, the key findings covered 

in this thesis can be concluded as following: 

Conclusion 1: There are many techniques in development for gear and bearing 

diagnostic. Amongst them, ALE, TSA and bispectrum analysis are potential because 

they have the inherent capability for noise reduction and signal enhancement. However, 

bispectrum is more promising because it is easy and reliable for implementation in 

practice.  

Conclusion 2: The vibration signals from bearings and gears exhibit periodic, 

impulsive and modulating characteristics that correspond to different degrees of local 

defects. These characteristics are important for signal analysis techniques development. 

Moreover, the common characteristics of bearings and gears make it feasible to 

implement fault detection and diagnosis using the same types of techniques. 

Conclusion 3: Optimised wavelet analysis allows the impulsive components of fault 

gears to be extracted at selected scale for fault detection. As wavelet has not had the 

true noise reduction capability, TSA has to be applied for pre-noise reduction. In 

addition, it also needs a reference signal measured from a tachometer, which increases 

complexity and cost due to additional hardware to collect the reference signal. 

Conclusion 4: Kurtogram is particularly effective for determining a band-pass filter 

that allows optimal envelope analysis and results in excellent performance of bearing 

fault detection and fault severity diagnosis. However, because Kurtosis values are very 

sensitive to aperiodic impulses and without any noise reduction mechanisms, kurtogram 

analysis is not robust to the interferences of such impulses including strong random 

noise, which can lead to inadequate detection and diagnosis. 

Conclusion 5: The proposed MSB-SE based robust detector can achieve both optimal 

band selection and envelope spectrum simultaneously and shows more reliable results 

for bearing fault detection and diagnosis because it achieves noise reduction and signal 

enhancement jointly, which is realised by accounting the full characteristics of 
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vibration signals, rather than just the impulsive character accounted in wavelet and 

kurtogram.  

Conclusion 6: The proposed residual sideband based approach is based on new 

findings that small sidebands around gear mesh components are due to an imperfect 

superposition of concurrent gear mesh vibration sources in an operational planetary 

gearbox with inherent errors, and that the MSB is particularly effective in extracting 

such small sidebands. As a result, it yields more accurate and consistent diagnostic 

results in a wide range of operating conditions, compared with that of the conventional 

spectrum analysis that is often based on the in-phase sidebands which are more affected 

by manufacturing errors. 

Conclusion 7: Combined faults in bearings and gears can be separated by MSB 

analysis. To make the results more reliable, multiple slices of MSB-SE should be 

averaged to minimise complicated interferences and noises from the concurrent sources 

and path distortions in a planetary gearbox. 

10.3 Research contributions to knowledge 

The researches carried out have brought a number of new understandings on the subject 

of developing effective signal analysis of vibration signals for accurate detection and 

diagnosis of faults on bearings and gears. For convenience, key contributions to 

knowledge in this thesis are outlined below: 

Contribution 2: The ALE algorithm based on an adaptive LMS filter allows the 

stationary periodic gear mesh components to be suppressed significantly in the time 

domain, achieving the enhancement of impulsive components for effective fault 

detection and diagnosis in a multistage gearbox. This has extended the knowledge that 

ALE can be applied to the vibration signals from a multi-stage helical gearbox for 

condition monitoring. 

Contribution 3: Like ALE, the optimal wavelet analysis is effective for extracting 

impulsive fault signals. However, because it does not have any mechanisms for noise 

suppression, TSA has to be used to suppress the meshing components in order to 

achieve an adequate detection and diagnosis performance for the faults on the 

multistage gearbox. These understandings have not been found in previous studies.  
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Contribution 4: The TFR based kurtogram shows high performance in highlighting 

impulsive components and achieving outstanding diagnostic results for bearing faults. 

However, it is deficient in dealing with noise interferences and hence not robust, and 

insensitive to incipient bearing defects. This deficiency has been realised for the first 

time in this study. 

Contribution 5: A novel MSB based detector has been suggested for the first time in 

detecting the incipient bearing faults. MSB takes into account more comprehensively 

the fault signal characteristics so that it can suppress both the stationary and aperiodic 

noises to enhance the periodic impulses due to bearing faults. 

Contribution 6: A novel approach for the fault diagnosis of planetary gearboxes has 

been proposed based on an accurate estimation of residual sidebands using MSB 

analysis. Especially, the utilisation of asymmetric sidebands around the mesh frequency 

has shown outstanding performances as the sidebands are less influenced by gear errors, 

compared with that of symmetric sidebands that have used traditionally for diagnosing 

planetary gearboxes.  

Contribution 7: As MSB-SE based analysis allows not only noise reduction but also 

sparse representation for the complicated modulations in the signals from the combined 

fault of the planetary gearbox, it then optimises the fault related content and allows 

more efficient fault feature exactions. Especially, the average of multiple MSB slices is 

used to obtain more robust results, which is realised the first time in this thesis.  

10.4 Suggestions for further research 

A great deal of preliminary research work has been undertaken as part of this study to 

investigate signal processing techniques for the analysis of non-stationary signals in 

machinery condition monitoring. If a further study will be undertaken, some key 

recommendations could be considered in this research area. 

Recommendation 1: Improve the kurtogram based bearing fault diagnosis by utilising 

multiple bands associated different resonances. Resonance regions in the kurtogram 

often exhibit certain patterns, so it is possible to recognise the number of resonance 

regions and extract the feature separately for a final average to improve the robustness 

of such method.  
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Recommendation 2: Investigate the fault mechanisms for developing more effective 

signal processing methods to detect and diagnose more common combined fault 

scenarios such as multiple defect locations, different combinations of fault severity, and 

multiple fault types, which are often cases in practical applications.  

Recommendation 3: Optimise the MSB based feature extraction using clustering 

algorithm for automated feature extraction of combined fault diagnosis. The MSB 

slices carry fault information for difference components and severity of a machine, so 

the classification of the slices is useful for reliable and accurate feature extraction. 

Recommendation 4: Carry out more studies of diagnosing planetary bearing faults 

because this kind of faults occurs commonly due to the unbalance forces and its 

associated vibration signal is more difficult to be resolved due to small in amplitude 

and non-stationary in the wave shapes. 
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