
University of Huddersfield Repository

Okorji, U. P.

Inhibition of Neuroinflammation by Artemisinin and its Derivatives

Original Citation

Okorji, U. P. (2015) Inhibition of Neuroinflammation by Artemisinin and its Derivatives. Doctoral 
thesis, University of Huddersfield. 

This version is available at http://eprints.hud.ac.uk/id/eprint/25897/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



INHIBITION OF NEUROINFLAMMATION BY 
ARTEMISININ AND ITS DERIVATIVES 

UCHECHUKWU PEACE OKORJI BSC. (HONS), MSC. 

 

 

 

A THESIS SUBMITTED TO THE UNIVERSITY OF 
HUDDERSFIELD IN PARTIAL FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF DOCTOR 

OF PHILOSOPHY 

 

THE UNIVERSITY OF HUDDERSFIELD 

JULY 2015 

 

(ORIGINAL SUBMISSION: APRIL 2015) 

 



2| P a g e  
 

Copyright statement 

i. The author of this thesis (including any appendices and/or schedules to this thesis) 

owns any copyright in it (the “Copyright”) and she has given The University of 

Huddersfield the right to use such copyright for any administrative, promotional, 

educational and/or teaching purposes. 

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance 

with the regulations of the University Library. Details of these regulations may be 

obtained from the Librarian. This page must form part of any such copies made. 

iii. The ownership of any patents, designs, trademarks and any and all other intellectual 

property rights except for the Copyright (the “Intellectual Property Rights”) and any 

reproductions of copyright works, for example graphs and tables (“Reproductions”), 

which may be described in this thesis, may not be owned by the author and may be 

owned by third parties. Such Intellectual Property Rights and Reproductions cannot 

and must not be made available for use without the prior written permission of the 

owner(s) of the relevant Intellectual Property Rights and/or Reproductions.  



3| P a g e  
 

Abstract 

Background: Neuroinflammation in the central nervous system involves the rapid reaction of 

the CNS through activation of resident immune cells (especially microglia cells) to infection, 

trauma and stroke, among other stimuli. It is a tightly regulated process but in chronic cases it is 

detrimental. Uncontrolled neuroinflammation has been shown to manifest itself in various 

neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic 

lateral sclerosis (ALS) and multiple sclerosis (MS). The Nrf2/HO-1 antioxidant system has also 

been recently shown to be involved in neuroinflammation. Artemisinin, artemether and 

artesunate are antimalarial drugs that have been shown to possess anti-inflammatory activity. 

However, there is no detailed evidence demonstrating that these drugs could inhibit 

neuroinflammation in lipopolysaccharide (LPS)-activated BV2 microglia cells. Therefore, this 

study aims to investigate the effects of these compounds in LPS-activated BV2 microglia. This 

research also attempted to explore the possible involvement of the Nrf2/HO-1 system in the 

anti-neuroinflammatory action of these compounds. 

Methods: Cultured BV2 microglia cells were stimulated with LPS following pre-treatment with 

artemisinin (5-40 µM), artemether (5-40 µM) or artesunate (0.5-4 µM). Nitrite, used as a 

measure of nitric oxide production was investigated using the Griess assay. PGE2 production 

was investigated with PGE2 EIA assay, while cytokine production was measured using ELISA. 

Reporter gene assays in transfected HEK 293 cells were used to investigate effects of the 

compounds on NF-B and ARE luciferase activities. Further experiments to elucidate the 

mechanism of action of artemisinin, artemether and artesunate were carried out by measuring 

expressions of various target proteins in whole cell and nuclear extracts using western blotting. 

In addition, NF-B DNA binding was investigated using the EMSA. Subsequent investigations to 

understand the role of Nrf2 activity on the inhibitory activity of the compounds on NO, TNFα, 

IL-6 and PGE2 production in activated BV2 cells were carried out in Nrf2 silenced cells. To 

achieve this, BV2 cells were transiently transfected with Nrf2 siRNA followed by pre-treatment 

with compounds and stimulation with LPS for 24 hours.  

Results: Artemisinin, artemether and artesunate inhibited LPS-induced nitric oxide (NO), 

prostaglandin E2 (PGE2) and pro-inflammatory cytokine (TNFα and IL-6) production in LPS-

activated BV2 microglia cells. These compounds also down regulated the expression of specific 

regulatory proteins, inducible NO synthase (iNOS) cyclooxygenase-2 (COX-2) and microsomal 

prostaglandin E2 synthase-1 (mPGES-1).  

Artemisinin, artemether and artesunate exerted anti-neuroinflammatory activity in LPS activated 

microglia by suppressing LPS-induced NF-B activity via inhibition of IB phosphorylation and 

degradation-mediated nuclear translocation of the p65NF-B subunit. These compounds also 
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produced consistent inhibition of DNA binding of NF-B. All three compounds exhibited a similar 

profile in interfering with p38MAPK signalling following LPS activation of BV2 microglia by 

preventing phosphorylation of MKK3/6, p38 and MAPKAPK2. This research showed that 

artemisinin, artemether and artesunate activated Nrf2 mediated HO-1 antioxidant activity in BV2 

cells. These effects appear to be mediated through the activation of the antioxidant response 

element (ARE). Further association studies revealed that artemisinin; artemether and 

artesunate caused reduction in TNFα, IL-6 and PGE2 secretion in LPS-activated BV2 cells 

through Nrf2-dependent mechanism. However, it appeared that their inhibitory action on NO 

production was independent of Nrf2 activity.  

Conclusion: Taken together, the outcome of this research indicates that artemisinin, 

artemether and artesunate suppress neuroinflammation in LPS-activated BV2 microglia by 

interfering with NF-B and p38MAPK signalling. The compounds also produced consistent 

activation of the Nrf2/HO-1 antioxidant protective system. This research has also provided the 

first evidence that the inhibitory actions of these compounds on TNFα, IL-6 and PGE2 are 

dependent on their ability to activate the Nrf2 transcription factor. 

 

Keywords 

Artemisinin, artemether, artesunate, neuroinflammation, microglia, LPS, Nrf2, HO-1, antioxidant 

responsive element, sesquiterpene lactones 
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DP1  Prostaglandin D2 receptor 

DTT  Dithiothreitol 

ECM  extracellular matrix 

EDTA  Ethylene diamine tetra-acetic acid 

ELK1  ETS domain-containing protein  

EMSA  Electrophoretic mobility shift assay 

EP (1-4) Prostaglandin E receptor 1-4 

ERK  Extracellular signal-regulated kinase 

eNOS  Endothelial nitric oxide synthase 

FBS  Foetal bovine serum 

FPA  prostanoid FPA receptor 

FPB  prostanoid FPB receptor 

GBS  Guillain-Barré syndrome 

GST  glutathione S-transferase 

GWAS  Genome-wide associated studies 

HEK 293 Human Embryonic Kidney 293  

HIV  Human immunodeficiency virus 

HO-1  heme oxygenase-1 

IFN-γ  Interferon gamma 

IB  Inhibitor of Kappa B 

IKK  IB kinase 

IL   Interleukin 

IL-1  Interleukin-1 

IL-1β  Interleukin-1 beta 
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IL-4  Interleukin-4 

IL-6  Interleukin-6 

IL-10  Interleukin-10 

IL-13  Interleukin-13 

IL-17  Interleukin-17 

IP  prostacyclin receptor 

IRAK1  Interleukin-1 receptor associated kinase 1 

IRAK4  Interleukin-1 receptor associated kinase 4 

iNOS  Inducible nitric oxide synthase 

IUPAC  International Union of Pure and Applied Chemistry 

JNK  c-Jun N-terminal kinase 

kDa  kilo-Dalton 

Keap1  Kelch ECH Associating Protein 1 

KO  knock-out 

LDS  Lithium Dodecyl Sulphate 

LPS  Lipopolysaccharide 

LT-β  Lymphotoxin beta 

LT-βR  Lymphotoxin beta receptor 

LTP  Long-term potentiation 

M  Molar 

MAPEG Membrane-associated proteins in eicosanoid and glutathione metabolism 

MAPK  Mitogen-activated protein kinase 

MAPKKK Mitogen-activated protein kinase kinase kinase 

MAPK3K Mitogen-activated protein kinase kinase kinase kinase 

MCP-1  Monocyte chemo-attractant protein 1 

MEM  Minimum essential medium 

MES  2-(N-morpholino) ethanesulfonic acid 

mg  milligram 
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MHC  major histocompatibility complex 

min  minute 

mM  millimolar 

MMP9  Matrix metalloproteinase-9 

mRNA  messenger RNA 

MRP  multi-drug-resistance-associated protein 

MS  Multiple Sclerosis 

MTT  3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide 

MyD88  Myeloid differentiation primary response gene 88 

NADPH  Nicotinamide adenine dinucleotide phosphate 

NEAA  Non-essential amino acid 

NED  N-1-naphthylethylenediamine dihydrochloride 

NEMO  NF-kappa B essential modulator 

NFTs  neurofibrillary tangles 

NF-B  Nuclear factor kappa B 

NLRs  nucleotide-binding oligomerization domains (NODs) NOD – like receptor (s) 

ng/ml  nanogram per microliter 

nm  nanometer 

NIK  NF-kappa B inducing kinase 

NO  Nitric oxide 

NOD  nucleotide-binding oligomerization domain 

nNOS  Neuronal nitric oxide synthase 

NOS  Nitric oxide synthase 

NPC  neural precursor cells 

NP-40  nonyl phenoxypolyethoxyl ethanol 40 

NQO1  NAD(P)H:quinone oxidoreductase 1 

Nrf2  nuclear factor [erythroid-derived 2]-like 

NSAID  Nonsteroidal anti-inflammatory drug 
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OPTI-MEM Optimised Minimum essential medium 

PBS  Phosphate buffered saline 

PD  Parkinson’s disease 

PG  Prostaglandin 

PGD2  Prostaglandin D2 

PGE2  Prostaglandin E2 

PGF2α  Prostaglandin F2-alpha 

PGH2  Prostaglandin H2 

PGI2  Prostaglandin I2 

PLA2  Phospholipase A2 

PMSF  Phenylmethylsulphonyl fluoride 

PNI   Peripheral nerve injury 

PNS  Periphery nervous system 

P/S  Penicillin streptomycin 

PTM  Post-translational modification 

PVDF  Polyvinylidene fluoride 

P2RX7  Purinergic receptor P2X ligand-gated ion channel 7 

RAC1  Ras-related C3 botulinum toxin substrate 1 

RNA  Ribonucleic acid 

RNS  Reactive nitrogen species 

rpm  revolutions per minute 

RORγt  Retinoic acid-related orphan receptor γt 

ROS  Reactive oxygen species 

RPMI 1640 Roswell Park memorial Institute 1640 medium 

SAP-1  SRF accessory protein 1 

SDS  Sodium dodecyl sulphate 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel 

SGL  subgranular layer 
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SL  Sesquiterpene lactone 

STAR1  Striated muscle activator of rho-1 

STAT3  Signal transducer and activator of transcription 3 

STAT6  Signal transducer and activator of transcription 6 

TAK1  TGF-β-activated kinase 1 

TBE  Tris borate Ethylene diamine tetra-acetic acid 

TBST  Tris buffered saline with Tween 20 

TGF-β  transforming growth factor-β 

Th17  T helper 17 

TLR  Toll like receptor 

TNF  Tumour necrosis factor 

TNF-α  Tumour necrosis factor-alpha 

TNFR  Tumour necrosis factor receptor 

TPα  Thromboxane A2 receptor alpha 

TPβ  Thromboxane A2 receptor beta 

TRAF  TNF receptor associated factor 

TRAF6  TNF receptor associated factor 6 

TRAM  Toll-like receptor adaptor molecule 2 

TRIF  TIR-domain containing adapter-inducing interferon -β 

TxA2  Thromboxane A2 

U/ml  Units per millilitre 

V  Volt 

VSMC  Vascular Smooth Muscle Cell 

WB  Western blot 

µg  Microgram 

µl  Microliter 

µM  Micro molar 

%  Percentage 
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°C  degrees centigrade 

&  and 

-siNrf2  samples from wild-type cells 

+siNrf2  samples from Nrf2 silenced cells. 

 



25| P a g e  
 

CHAPTER 1 

INTRODUCTION 
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1. Introduction 

In the human body, the immune system plays vital roles in the maintenance of tissue 

homeostasis, and the response to infection and injury (Glass et al., 2010). Both the innate 

and adaptive immune systems interact with each other to ensure homeostasis. Inflammation 

is a host defence response to injury, tissue ischemia, autoimmune responses or infectious 

agents. According to Ricciotti and FitzGerald (2011), ‘inflammation is an intrinsically 

beneficial event that leads to removal of offending factors and restoration of tissue structure 

and physiological function’. Hence, it is the body’s immune system’s response to infection 

and injury. Inflammation is locally exhibited by the classical features of swelling, redness, 

heat and pain within tissues outside the brain (Buckley et al., 2013). Inflammation often 

elicits a generalised sequence of events, which are referred to as the acute phase response. 

This acute phase response represents another host defence mechanism, which can limit 

proliferation of invading pathogens. The mechanisms involve the production of acute phase 

proteins by the liver, activation of sympathetic nervous system, changes in cardiovascular 

function, altered endocrine status, and behavioural changes leading to energy conservation 

such as reduced appetite, increased sleep and most common feature of infection, fever 

which can limit bacterial proliferation (Glass et al., 2010). These mechanisms have been put 

in place by the body to ensure homeostasis at all times. Thus, the inflammatory response 

represents a highly regulated biological programme that enables the innate and adaptive 

immune systems to effectively deal with pathogens. It is also involved in the production of 

factors that are themselves capable of inducing significant pathology (Glass et al., 2010). 

Deregulation of the immune system can be detrimental and hence, inflammation has been 

implicated in the pathogenesis of various diseases – arthritis, cancer, stroke and 

neurodegenerative and cardiovascular diseases. 

The central nervous system (CNS) differs from the other systems and its response to 

pathogenic challenges is different. Previously, the CNS was regarded as an ‘immune 

privileged’ organ which is not susceptible to inflammation or immune activation. It was 

thought to be largely unaffected by systemic inflammatory and immune responses. However, 

this hypothesis is now flawed as research findings support the input of the periphery in the 

CNS especially when the blood brain barrier is affected (Hernández-Romero et al., 2012; 

Lim et al., 2013).  

1.1. Neuroinflammation 

Neuroinflammation is the inflammation of a nerve or of the nervous system. It involves the 

rapid reaction of the CNS through activation of the resident immune cells to infection, 

trauma, toxins and stroke, among other stimuli (Shastri et al., 2013). It can be initiated by a 
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variety of cues. The common causes include toxic metabolites (Rao et al., 2012), exosomes, 

autoimmunity, aging (Pizza et al., 2011), microbes, viruses (Rao et al., 2012), traumatic 

brain injury (Aungst et al., 2014), air pollution (Levesque et al., 2011), and passive smoke 

(Moreno-Gonzalez et al., 2013; Shastri et al., 2013). Cellular and molecular immune 

components such as specialised macrophages (e.g. microglia), cytokines, complement, and 

pattern-recognition receptors are the contributing players in neuroinflammation (Shastri et 

al., 2013). 

Neuroinflammation is a normal and necessary process. It is tightly controlled but when 

directed against normal tissue it is damaging (Jha et al., 2012). The harmful effects of 

neuroinflammation are observed when it manifests itself in diseases. A wide range of 

neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), 

amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) are associated with chronic 

neuroinflammation (Cherry et al., 2014; Jha et al., 2012). Neuroinflammation also plays a 

crucial role in the progression of many neuropsychotic and viral diseases. The detrimental 

role of neuroinflammation in the pathology of these diseases highlight the importance of 

understanding the process as well as identifying compounds that could modulate its activity 

and/ or restore balance in homeostasis especially in disease states. 

Inflammation in the brain is characterised by the activation of glial cells. Various types of glial 

cells are found in different parts of the nervous system. Hence, neuroinflammation can be 

grouped into peripheral nervous system (PNS) inflammation and central nervous system 

(CNS) inflammation. Both PNS and CNS neuroinflammation are characterised by infiltration 

of leukocytes and increased production of inflammatory mediators at these sites (Ji et al., 

2014). PNS neuroinflammation involves inflammation of the peripheral nerve and ganglia. It 

manifests as activation of schwann cells in the nerve and is involved in diseases such as 

chronic inflammatory demyelinating polyneuropathy (CIDP) (Ydens et al., 2013), peripheral 

nerve injury (PNI) (Gaudet et al., 2011), chronic pain (Ji et al., 2014), Guillain-Barré 

syndrome (GBS) (Ydens et al., 2013) and schwannomatosis (Ydens et al., 2013). Satellite 

glial cells in the ganglia also play a role in neuroinflammation in the PNS.  

On the other hand, CNS neuroinflammation involves the brain and spinal cord with the 

activation of microglia and astrocytes playing an important role. Other glial cells such 

oligodendrocytes in the spinal cord and brain also play a role in neuroinflammation. CNS 

neuroinflammation is involved in diseases such as Alzheimer’s disease (AD) (Butovsky et 

al., 2014), Parkinson’s disease (PD) (Fan et al., 2014), multiple sclerosis (MS) (Naegele & 

Martin, 2014; Whalley, 2014) and amyotrophic lateral sclerosis (ALS) (Hooten et al., 2015).  
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The involvement of various glial cells in neuroinflammation highlights the crucial role played 

by these cells in the process and the need to understand the signalling pathways involved in 

their over-activation during chronic neuroinflammation. It also highlights the need to 

understand the points at which these pathways could be inhibited or attenuated to stop 

chronic neuroinflammation. 

Neuroinflammation can also be classified based on the duration of the inflammation into 

acute and chronic neuroinflammation. Acute neuroinflammation comprises of the immediate 

and early response that paves the way for repair of the damaged site in the CNS (Rao et al., 

2012). Acute neuroinflammation usually follows injury and is characterised by inflammatory 

molecules, endothelial cell activation, platelet deposition and tissue oedema. In the acute 

phase after an injury, neuroinflammation is tightly controlled (Jha et al., 2012).  

On the other hand, chronic neuroinflammation involves excessive activation of glial cells, 

which have harmful effects on other cells including the neurons. This highlights the need to 

curtail neuroinflammation in chronic neuroinflammatory conditions in the CNS. Brain 

inflammation has also been reported to be detrimental to neurogenesis, a process by which 

neurons are generated from neural stem cells and progenitor cells (Whitney et al., 2009). It 

also explains why neuronal death in diseases like AD is hard to reverse as chronic 

neuroinflammation is one of the primary underlying factors involved in the progression of the 

disease. Therefore, it is important to understand the molecular mechanisms involved in 

chronic neuroinflammation. Moreover, careful selection of targets considered for drug 

development is also important. 

As mentioned earlier, initial response to harmful stimuli in the CNS is achieved by the 

activation of resident microglial cells. This is followed by the production of inflammatory 

mediators, which trigger the increased movement of blood-derived immune cells into the 

injured tissue (Kaminska et al., 2009). Emphasis today has been placed on the microglia, the 

complement system and inflammatory mediators as playing major roles in chronic 

neuroinflammation. This highlights the need to understand the role of the microglia and 

inflammatory mediators in neuroinflammation. 

1.1.1. The microglia in neuroinflammation 

Microglia cells are small glial cells, which are resident macrophages of the brain and spinal 

cord (Cherry et al., 2014; Graeber & Streit, 2010). Their morphology differs from 

‘conventional’ macrophages by the presence of branch-like processes otherwise known as 

ramified appearance (Shastri et al., 2013). Microglia cells, which are yolk-sac-derived, 

remain throughout life, with the population maintained by self-renewal in the healthy CNS 

with little contribution from the bone-derived macrophages (Salter & Beggs, 2014). Microglia 
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cells in the adult murine CNS accounts for 5 – 12 % of the total number of glial cells 

(Gomez-Nicola & Perry, 2015). In humans they account for 0.5 – 16 % of the total nerve 

cells in the brain (Rojo et al., 2014). Microglial cells acquire their definitive composition after 

birth, in terms of numbers and phenotype (Gomez-Nicola & Perry, 2015). Microglia plays a 

beneficial role in scavenging cell debris, tissue healing and repair. But, in chronic state it is 

damaging to the CNS. 

 

 

Figure 1: Functional states of microglia in the brain (Gomez-Nicola & Perry, 2015) 

The microglia assumes a variety of functional state depending on the conditions it is 

presented with (Figure 1). Previously, microglia cells in the resting state were thought to be 

relatively quiescent. Now, microglia cells are known to be constantly active and surveying 

their environment (Perry & Teeling, 2013). 

In the surveillant state, microglia cells constantly and rapidly scan the microenvironment 

whilst keeping their soma in a fixed position. Aging has been shown to affect the stability of 

microglia cells (Hefendehl et al., 2014). Aging also leads to disruption in microglia 

organization, decrease in microglial motility and a remarkable increase in the motility of the 

soma. This effect of ageing on microglial stability may be the reason why aging is implicated 

as one of the risk factors of diseases involving neuroinflammation. This may probably also 

account for the increase in the incidence of neuroinflammatory disorders with increase in 

age. The maintenance of the surveillant phenotype in microglia cells is achieved by various 

soluble or membrane-bound factors (Hanisch & Kettenmann, 2007; Kettenmann et al., 

2011). There is also a high probability that these various factors that maintain microglia cells 

in the surveillant phenotype are dysfunctional in neuroinflammatory CNS disorders. 
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Microglia cells can also exhibit other functional states including pruning and neuromodulation 

(Figure 1). In pruning, the precise role of microglia cells in the process is known as ‘synaptic 

stripping’. Synaptic stripping is the separation of the presynaptic terminal from an injured 

postsynaptic neuron (Perry & O’Connor, 2010). Microglial pruning has been described during 

postnatal development but the mechanism of the involvement of this in early stages of 

development, during diseases and in pathologies is unclear (Gomez-Nicola & Perry, 2015). 

Microglia cells play a role in regulating homeostatic synaptic plasticity. In addition, these 

cells are involved in the regulation of neuronal activity, highlighting their neuromodulatory 

state. Microglia cells can release neuromodulatory chemicals, which influence neuronal firing 

and intracellular signalling (Sheridan & Murphy, 2013). This implies that microglia cells not 

only play a role as the first line of defence in the CNS but also regulate neuronal activity. 

Therefore, malfunction of the microglia cells during chronic neuroinflammation affect 

neuronal activity. This further highlights the need to properly inhibit neuroinflammation in 

CNS disorders and diseases involving chronic neuroinflammation.  

Microglia cells can also exist in the phagocytic state (Lyman et al., 2014). The phagocytic 

activity of microglia cells is one of the features that they share in common with their cellular 

relative, the macrophages. The phagocytic state of microglia cells helps eliminate bacteria 

during infection (Gomez-Nicola & Perry, 2015). Microglia cells function as transitory 

phagocytes responsible for clearing apoptotic neuronal cell bodies during CNS ontogeny. In 

addition, in the phagocytic state, microglia cells can activate the inflammasome (which 

activates apoptosis), to ultimately enable tissue regeneration and scarring (Lyman et al., 

2014). During this state, microglia cells are very motile and move to the site of injury to clear 

harmful toxins. This movement is known as microgliosis. Consequently, the phagocytic state 

of the microglia cells is very important in maintaining homeostasis and ensuring that the 

CNS is not overcome by the toxic challenge it might be faced with. Microgliosis in 

neuropathology can be self-limiting by eliminating not only infiltrating, inflammatory cells but 

also the excess of microglia by apoptosis (Tambuyzer et al., 2009). In a study by Sierra et al 

(2013), the role of phagocytic microglia cells on the hippocampal neurogenic niche in a 

healthy brain was investigated. The study shows that phagocytic microglia cells can clear 

potential toxic proteins such as amyloid beta (Aβ). At the hippocampal subgranular layer 

(SGL), neurogenic cascade leads to the generation of a population of early neural precursor 

cells (NPCs), which become finely selected by apoptosis, before completing the maturation 

to granule cells (Ming & Song, 2011). Sierra et al. (2010) reported that ramified phagocytic 

microglia cells rapidly and effectively remove dying NPCs in a non-inflammatory fashion. 

They also showed that when challenged with LPS, NPCs undergo increased apoptosis. It is 

unclear if this is as a result of the indirect production of pro-inflammatory cytokines or direct 
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phagoptosis (cell death by phagocytosis). Apart from removal of dead or damaged cells, 

phagocytic microglia cells can clear axonal and myelin debris (Hosmane et al., 2012) , engulf 

and prune synapses (Schafer et al., 2012) as well as clear toxic proteins such as Aβ (Sierra 

et al., 2010). In neurodegenerative diseases, this phagocytic role of microglia cells is not 

efficient.  

Microglial cells produce immunoregulatory molecules including chemokines, cytokines, 

growth factors, prostanoids and free radicals in their activated state. Nitric oxide and 

superoxide produced by microglial cells are also modulated by pro- and anti-inflammatory 

cytokines and/or growth factors. Therefore, the modulation by the pro- and anti-inflammatory 

cytokines balances each other, leading to a stable state in the healthy brain. However, an 

imbalance in this system is detrimental and observed in neuroinflammatory related diseases. 

Microglia cells also exist in the inflammatory functional state. The inflammatory functional 

state plays a major role in neurodegenerative diseases and hence considered in scientific 

literature in mostly diseased (unhealthy) brain. Although this is mostly the case, it may be 

important to throw some light on the inflammatory profile of the microglia in a healthy brain, 

under normal physiological conditions. In a study by Hickman et al. (2013) the analysis of the 

microglial transcriptome shows a profile dominated by ribonucleic acids (RNAs) encoding 

proteins for sensing endogenous ligands and microbes, jointly referred to as ‘microglial 

sensome’. Microglial cells up-regulate the expression of microbe-recognition genes. These 

microbe-recognition genes help microglia cells function in the inflammatory functional state. 

A recent comparison of the transcriptomic profile of the microglia highlights a unique 

functional signature in microglia cells dominated by the activity of transforming growth factor 

(TGF)-β (Butovsky et al., 2014). This signature allows specific differentiation of microglia 

cells when compared with other myeloid cells or resident brain cells. This specific 

differentiation highlights the particularities of the microglial population. Microglia cells in 

normal physiological conditions have a down-regulated expression of molecules like CD45, 

Fc receptors or major histocompatibility complex (MHC) class II when compared to other 

macrophages (Perry & Teeling, 2013). The MHC class II is one of the markers activated in 

response to injury or illness, hence, the down-regulation in a healthy brain. However, its 

expression increases with age. 

Upon environmental stimulation or challenges, microglia cells become activated and the 

morphology changes to an amoeboid appearance where they retract the ramifications 

(Shastri et al., 2013). These various roles of the microglia highlight its role in maintaining 

homeostasis. Therefore, an imbalance in the regulatory systems used by microglia cells lead 

to a disease state. Using a full array of immune receptors such as toll-like receptors (TLRs), 

nucleotide-binding oligomerization domains (NODs) NOD – like receptors (NLRs) and many 
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scavenger receptors, microglia cells are able to recognise harmful stimuli and respond to it 

(Cherry et al., 2014). The inflammatory response of microglia cells could either be acute or 

chronic. 

The acute response is believed to be protective because it avoids further injury and induces 

tissue repair. Microglia cells achieve this by removal of debris, scavenging neurotoxins as 

well as secretion of mediators important for neuronal survival (Lima et al., 2012). Lima et al. 

(2012) also reported that this acute response contributes to wound healing.  

Microglia cells also play an important role in chronic inflammation as the intense activation 

and accumulation of dead cells and activated microglia at the site of injury can induce 

neuronal damage. This is because dead cells and excessively activated microglia cells 

release a variety of neurotoxic substances. In neurodegenerative disorders, the common 

pathophysiological hallmarks are activation of microglia cells and astrogliosis, infiltration of 

immune system and activation of the adaptive immune system (Kaminska et al., 2009). 

Hence, the inflammatory functions of microglia cells have a special relevance in 

understanding the progression of neurodegenerative diseases. A chronic reactive state of 

microglia cells or an abnormally high proportion of activated microglia cells may become 

unsafe by increasing the inflammatory burden. At this stage, neuroinflammation has been 

reported to be self-perpetuating (Lima et al., 2012). Chronic inflammation in the CNS 

induces neuronal death, and the molecules released by the dead neurons can further 

activate microglia cells, which enhance cell death. This vicious cycle together with the 

continuous production of factors that activate microglia contribute to the chronicity of the 

neuroinflammation process.  

1.1.2. Microglia activation states - M1 and M2 

Microglial activation through toll-like receptors (TLRs) and NOD – like receptors (NLRs) is 

considered as the ‘classical’ form of microglial activation. During ‘classical’ activation, innate 

immune responses including production of pro-inflammatory cytokines like tumour necrosis 

factor alpha (TNFα), interleukin (IL)-1β and IL-6 and chemokines occurs (Cherry et al., 2014; 

Rojo et al., 2014). These pro-inflammatory mediators are produced either locally in the CNS 

or recruited from the peripheral system following the disruption of the blood brain barrier 

(BBB). The classical activation leads to adaptive immune response by expressing major 

histocompatibility class II molecules and interaction with T cells. The classical activation is 

generally typified by the production of pro-inflammatory cytokines and reactive oxygen 

species (ROS) (Cherry et al., 2014). The cytokine production is essential for the polarization 

of the microglia into the classical state, otherwise known as the M1 phenotype (Figure 2). 

The M1 profile is a rapid response of microglia characterised by hypertrophic bodies, with 
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fewer, thicker, and shorter processes than those of surveillance microglia (Rojo et al., 2014). 

The M1 microglia is generally considered as potent effector cells that kill and engulf 

microorganisms as well as tumour or otherwise damaged cells. The M1 response is 

reinforced rapidly by coactive factors including ROS and reactive nitrogen species (RNS) 

released by the microglia and surrounding cells. Therefore, a potential distinction and an 

important component of M1 microglia is their ability to produce ROS and RNS. A key 

microglia enzyme, which is very much associated with this process, is iNOS, which utilises 

arginine to produce nitric oxide (NO) (Cherry et al., 2014; Rojo et al., 2014).  

 

Figure 2: M1 and M2 dynamics in microglial activation (adapted from Rojo et al., 2014) 

 

The effective regulation of the cytokines, ROS and RNS produced during the classical 

activation is important as over production of these mediators can be detrimental to the CNS. 

Optimal regulation of M1 also helps in smooth progression into M2 phenotype, which helps 

in recovery after a challenge (Figure 2). Although the M1 phenotype seems to have 

straightforward identification markers based on characteristics, classifying these cells in vivo 

has proven to be more challenging. The NF-B transcription factor is central to the 

acquisition of the pro-inflammatory M1 polarization (Rojo et al., 2014). 

The pro-inflammatory polarization of the microglia (M1) is often followed by a long-lasting 

repair stage (Hu et al., 2015; Wang et al., 2014). The transition from the M1 phenotype to 
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the M2 phenotype is very vital in homeostasis. This infers that in the pathology of most CNS 

neuroinflammatory diseases, the challenge is that the microglia cells do not transit to the M2 

phenotype, which initiates the long lasting repair. This long lasting repair stage is the second 

state of activation of the microglia known as the alternate activation or M2 phase/phenotype 

(Figure 2). In the M2 phenotype, the microglia display hypertrophic cell bodies with thick and 

ramified processes and high phagocytic capacity (Rojo et al., 2014). During the M2 phase, 

the microglia takes on an anti-inflammatory phenotype which is involved in wound healing 

and debris clearance (Cherry et al., 2014); Hu et al., 2015). The M2 phenotype is activated 

by the anti-inflammatory cytokines such as IL-4, IL-3 and IL-10, immunoglobulin complexes/ 

TLR, TGF-β and glucocorticoids (Rojo et al., 2014). The division of the M2 is based on 

observations that stimulation with various cytokines yield different sets of receptor profiles, 

cytokines production, chemokine secretion and function (Cherry et al., 2014). Even though 

the profiles of the cells classified in the M2 phenotype are diverse, the one feature that 

places them all in the M2 classification is their ability to express mediators or receptors that 

have the capacity to down regulate repair, or protect the body from inflammation. The M2 

response is crucial for restoration of normal tissue homeostasis, because it leads to the 

switching off of the proinflammatory response, scavenging of debris and restructuring of the 

damaged extracellular matrix (ECM). The signalling cascades involved in the acquisition of 

the M2 phenotype are less well understood, yet cytokines such as interleukin -4 (IL-4) which 

signals through signal transducer and activator of transcription 3 (STAT3) and signal 

transducer and activator of transcription 6 (STAT6) appear to be important. However, the 

induction of anti-oxidant and cytoprotective genes is a signature of M2 polarization. New 

findings indicate that the nuclear factor [erythroid-derived 2]-like (Nrf2) signalling favours an 

M2 phenotype (Rojo et al., 2014). 

1.1.3. Role of Nitric oxide (NO) in neuroinflammation 

Nitric oxide is a key messenger involved in physiological functions including regulation of 

inflammatory and immune responses (Förstermann & Sessa, 2012; Virarkar et al., 2012). It 

is a bioactive radical, which plays a crucial role as both neurotransmitter and neuromodulator 

in the CNS (Banuls et al., 2014). NO is involved in a vast range of functions including 

neurotransmission, regulation of food intake, control of the sleep-wake cycle, modulation of 

hormone release, thermal regulation, neuroprotection and neurotoxicity (Cespuglio et al., 

2012; Godinez-Rubi et al., 2013; Morley et al., 2011; Sagi et al., 2014). At low 

concentrations, NO has physiological roles in the function of neuronal and vascular cells. On 

the other hand, at higher concentrations, it is implicated in the pathogenesis of various 

neurological diseases including stroke, neurodegenerative diseases, and demyelination and 

neuroinflammatory diseases (Drechsel et al., 2012; Ghasemi & Fatemi, 2014). This suggests 
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the importance of this inflammatory mediator and the need to inhibit its overproduction in 

chronic CNS neuroinflammatory diseases. 

NO is enzymatically produced from an amino acid, L-arginine, by the activity of NO synthase 

(NOS) enzyme. Three NOS subtype exists: neuronal (n) NOS, endothelial (e) NOS and 

inducible (i) NOS (Förstermann & Sessa, 2012; Joshua & Thomas, 2014). The third subtype 

iNOS (or NOS2) indicates that the expression of the enzyme is induced by inflammatory 

stimuli. It is expressed in various cell types especially the glial cells, astrocytes and 

microglia. These glial cells do not express iNOS constitutively but express the enzyme in 

pathological conditions such as ischemia, trauma, and neurotoxic and inflammatory damage. 

Several line of evidence have demonstrated that glial NO is involved in the pathophysiology 

of various neurological diseases including demyelination (e.g. multiple sclerosis [MS], 

experimental allergic encephalopathy, and X-linked adrenoleukodystrophy [ALD]), neuronal 

death during ischemia (e.g. stroke) and trauma, and neurological diseases (e.g. Alzheimer’s 

disease [AD], Parkinson’s disease [PD], Huntington’s disease [HD], Human 

immunodeficiency virus (HIV)-associated dementia and ALS) (Virarkar et al., 2012). In 

addition, the formation of nitotyrosine (a marker of nitrosative stress) has been documented 

in patients with PD and AD (Butterfield et al., 2011; Chinta & Andersen, 2011; Tao et al., 

2012). These observations provide evidences for the role of NO in the pathogenesis of these 

diseases. Consequently, an understanding of the intracellular signalling pathways involved in 

glial iNOS-derived NO production can provide novel therapeutic approaches for targeting 

these pathways. 

1.1.4. Cytokines in neuroinflammation 

Cytokines are a class of small proteins that act as signalling molecules at picomolar or 

nanomolar concentrations to regulate inflammation and modulate cellular activities including 

growth, survival and cell differentiation (Ramesh et al., 2013). Cytokines are a large and 

diverse group of pro- or anti-inflammatory factors that are grouped into families based upon 

their structural homology or that of their receptors. Anti-inflammatory cytokines including 

interleukin 10 (IL-10), interleukin 4 (IL-4) and transforming growth factor beta (TGF-β) are 

important in neuronal and glial survival during neuroinflammation. On the other hand, pro-

inflammatory cytokines generated during neuroinflammation including tumour necrosis factor 

alpha (TNFα), interleukin 6 (IL-6), interferon gamma (IFN-γ) and interleukin-1 (IL-1) are 

involved in blood brain barrier (BBB) breakdown, tissue destruction, leukocyte emigration 

into the CNS, cytotoxic factors production, free radical formation, neuronal and glial 

dysfunction, apoptosis and neurodegeneration (Ramesh et al., 2013). The involvement of 

pro-inflammatory cytokines in all these detrimental situations strongly highlights the need to 

inhibit pro-inflammatory cytokines involved in chronic neuroinflammation. 
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1.1.4.1. Interleukin-6 (IL-6)  

IL-6 is a pleiotropic inflammatory cytokine involved in the regulation of immune response, 

haematopoiesis, cell regeneration and inflammation (Brunssen et al., 2013; Gruol, 2014). 

Under physiological conditions, IL-6 and IL-6 receptor are expressed in several regions of 

the brain including the hippocampus, striatum, hypothalamus, neocortex and brainstem. IL-6 

has both pro- or anti-inflammatory actions, depending on the signalling pathway activated 

(Scheller et al., 2011). The dual function of IL-6 as a pro- or anti-inflammatory cytokine is a 

well-balanced system. However, during chronic neuroinflammation, this balance is tilted 

towards pro-inflammatory function. Hence, the pro-inflammatory function is considered in 

neuroinflammatory conditions.  

In a study by Baune et al. (2009), the possible relationship between MRI changes in the 

aging brain and peripheral cytokine levels was reported. It has also been reported that one 

of the main protein kinases, Cdk5/p35 complex, which is involved in tau hyper-

phosphorylation in neurodegenerative disorders, appears to be up regulated by the effects of 

IL-6 as well as IL-1 (Banzhaf-Strathmann et al., 2014).  

IL-6 production has been reported in activated glia cells and its role in neuroinflammation 

and neurodegeneration is also associated with cognitive impairment (Rojo et al., 2008). 

These authors also suggest that the mechanisms for impairing cognitive functions used by 

IL-6 may result from its own activity or related to the production of other cytokines. This is 

because in LPS-induced neurodegeneration, messenger RNA (mRNA) levels of IL-1β and 

TNFα in the hippocampus are significantly higher in IL-6 wild type animals and very low in 

IL-6 knock-out (KO) mice.  

During neuroinflammation, IL-6 is up regulated following an infection or injury in the CNS or 

in a number of CNS diseases. Various studies have shown that IL-6 was expressed, 

produced and/or up regulated in various diseases including viral meningitis, experimental 

cerebral malaria, and traumatic brain injury (Erta et al., 2012). Therefore, proper regulation 

of IL-6 is important in neuroinflammatory disorders. 

1.1.4.2. Tumour Necrosis Factor alpha (TNFα) 

TNFα is a potent multifunctional cytokine, which exerts inflammatory effects in the CNS 

during chronic inflammation. Upon binding to its associated receptor, TNFα is considered to 

be a master regulator of cellular cascades that control a number of diverse processes 

(Frankola et al., 2011) like physiological roles in synaptic transmission and plasticity. It plays 

a central role in initiating and regulation the cytokine cascade during an inflammatory 

response (Rubio-Perez & Morilla-Ruiz, 2012). The levels of TNFα in the healthy brain are 

low but high in inflammatory states. In the CNS, although astrocytes and neurons are able to 
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produce TNFα, microglia cells are the major source of this cytokine during 

neuroinflammation (Hanisch, 2002; Welser-Alves & Milner, 2013). 

Excessive TNFα levels have an inhibitory effect on glutamate transporters, resulting in 

increased glutamate concentration in the CNS parenchyma (Olmos & Llado, 2014). 

Therefore, even slight increases in TNFα induced Ca2+ permeable-AMPA and/or NMDA 

receptor trafficking becomes toxic for neurons (Olmos & Llado, 2014). Toxicity in neurons 

leads to neuronal death, suggesting the need for homeostasis in TNFα production. Microglial 

activation and up regulation of TNFα expression is a common feature in chronic 

neuroinflammation. Hence, TNFα may represent a viable target for pharmacological 

intervention.  

During neuroinflammation, different stimuli trigger TNFα production via different signalling 

pathways including p38MAPK (Mir et al., 2008) and NF-B (Lawrence, 2009), thus, making it 

difficult to determine which of the signalling pathway(s) is implicated in the induction of TNFα 

expression (Olmos and Llado, 2014). TNFα can also activate microglia cells by itself. 

Therefore, the TNFα generated from microglia cells in turn activates the microglia. TNFα 

knock out (KO) in mice has been shown to inhibit microglial activation (Zhao et al., 2007). 

This suggests that TNFα is an important cytokine in neuroinflammation. Hence, modulation 

of TNFα production is important.  

TNFα has been strongly implicated in neurodegenerative diseases. For instance, microglia 

derived TNFα has been shown to be the major cytokine responsible in promoting neuronal 

cell cycle events in the pathogenesis of Alzheimer’s disease (Bhaskar et al., 2013). 

Therefore, attenuation of TNFα expression in these diseases is vital to restoring 

homeostasis. 

1.1.5. Prostaglandin E2 in neuroinflammation 

Prostaglandin E2 (PGE2) is a lipid autacoid derived from arachidonic acid. PGE2 is formed 

when arachidonic acid (AA), a 20-carbon unsaturated fatty acid is released from the plasma 

membrane by phospholipases and metabolised by the sequential actions of PGG/H 

synthase or by cyclooxygenase (COX) and their respective synthases (Ricciotti & FitzGerald, 

2011) (Figure 3). 

PGE2 is produced by the action of cyclooxygenases, which mediate the first step in its 

synthesis from arachidonic acid. PGE2 plays a role in both physiology and pathology. PGE2 

production in uninflamed tissues is generally low but increases immediately during 

inflammation (Riccotti & FitzGerald, 2011). The constitutively active COX-1 is responsible for 

the majority of the PGE2 produced under homeostatic conditions. However, COX-2 is 

responsible for the massive release of PGE2 during inflammation (acute or chronic) (Fiebich 
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et al., 2014). Due to the crucial role of COX-2 in neuroinflammation, COX-2 derived PGE2 

production is also considered to be crucial in neuroinflammation. In addition, PGE2 produced 

in excess during neuroinflammation act on prostaglandin E2 receptor (EP receptors), which 

is expressed in the microglia. Activation of microglial EP2 receptors is known to enhance 

neurotoxic activities (Schlachetzki et al., 2010). Therefore, inhibition of PGE2 in 

neuroinflammatory conditions is important in restoring homeostasis. 

 

Figure 3: Prostaglandin production - the biosynthetic pathway. (Ricciotti & FitzGerald, 2011) 

 

1.1.5.2. Cyclooxygenases 

Cyclooxygenases have two isoforms: COX-1 and COX-2 which share 60% homology in their 

amino acid sequence and have comparable kinetics (Aid & Bosetti, 2011). They also show 

individual differences; COX-1 is expressed constitutively in most cells and is involved in 

housekeeping functions. Inflammatory stimuli, hormones and growth factors induce COX-2. 

COX-2 is the important source of prostanoids formation in inflammation and in proliferative 

diseases.  

In the CNS, both cyclooxygenases are constitutively expressed (Aid & Bosetti, 2011). COX-2 

is detected in the perinuclear, dendritic and axonal domains of neurons, particularly in 
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cortex, hippocampus, amygdale and dorsal horn of the spinal cord of both rodent and human 

CNS. It is highly inducible by inflammatory stimuli (Moilanen, 2014) and has been 

traditionally considered as the most appropriate target for anti-inflammatory drugs. COX-1 

isoform is predominantly expressed by microglia in rodent and human brains and its brain 

expression increase with aging (Choi et al., 2013). In a study using COX-1 and COX-2 

selective inhibitors, the comparable role of each COX isoform in neuroinflammatory 

response induced by β-amyloid peptide (Aβ) was investigated. Results showed that 

treatment with either COX-1 or COX-2 selective inhibitor or their combination equally 

decreased the level of TNFα, PGE2 and cleaved caspase-3 and attenuated astrogliosis and 

neuronal cell loss (Dargahi et al., 2011). Dargahi et al (2011) also showed that treatment 

with COX-1 selective inhibitor or the combined COX inhibitors prevented the induction of 

COX-2. These findings suggested that the activity of both isoforms might be detrimental in 

neuroinflammatory conditions associated with Aβ. However, there are no indications that 

COX-1 expression levels in microglia are changed under neuropathological or 

neuroinflammatory conditions (Hoozemans et al, 2008). Therefore, COX-2 activity is the 

main source of PGE2 increment and the main cyclooxygenase involved in 

neuroinflammation.  

COX-2 has been well established to be involved in neuroinflammation. Inhibition or genetic 

deletion of COX-2 has been shown to exacerbate neuroinflammatory response to an 

endotoxin challenge (Aid et al., 2010). Using LPS-induced neuroinflammation, COX-2 

deletion has been shown to increase neuronal damage, glial activation and expression of 

brain cytokines and ROS-expressing enzymes – a major source of superoxide during 

neuroinflammation (Aid et al., 2010). Also, COX-2 isoform plays an important role in synaptic 

plasticity, memory consolidation and cortical development in neurons and mediates 

neuroinflammation in microglia (Fiebich et al., 2014). Therefore, proper regulation of COX-2 

is vital to homeostasis; highlighting the need to inhibit excessive production of COX-2 in 

neuroinflammatory disorders. 

1.1.5.3. Microsomal prostaglandin E2 synthase-1 (mPGES-1)  

The cyclooxygenases have been better understood upon the discovery of prostaglandin E2 

synthase (PGES), which belongs to a superfamily known as membrane-associated proteins 

in eicosanoid and glutathione metabolism (MAPEG) (Jakobosson et al., 1999; Samuelsson 

et al., 2007). PGESs regulate the final step in the synthesis of PGE2. mPGES-1 is 

responsible for the conversion of prostaglandin (PG) H2, produced by the COX enzymes into 

PGE2, a powerful mediator of inflammation (Leclerc et al., 2013). To date, there are three 

known PGES: cytosolic (c) PGES, microsomal (m) PGES-1 and mPGES-2. mPGES-1 is 

induced by pro-inflammatory stimuli (such as LPS, IL-1β and TNFα), down regulated by anti-
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inflammatory glucocorticoids and functionally coupled with COX-2 in marked preference to 

COX-1 (de Oliveira et al., 2008). In addition, microglia-specific expression of mPGES-1 

contributes to LPS-induced PGE2 production (Ikeda-Matsuo et al., 2005). Enhanced 

mPGES-1 expression has been demonstrated in several pathologies including rheumatoid 

arthritis (Westman et al., 2004), osteoarthritis (Li et al., 2005) and Alzheimer’s disease 

(Chaudhry et al., 2008). In addition, in a study using mPGES-1 knockout mice treated with 

IL-1β, it was shown that activation of mPGES-1 is involved in inflammation (Siljehav et al., 

2012). These suggest that mPGES-1 is important in neuroinflammation and its inhibition is 

vital in modulating this process. 

1.2. Nuclear factor kappa B (NF-B) signalling pathway 

NF-B, a transcription factor, is a complex dynamic protein interaction network of several 

interacting components that regulate each other. Most of the components of the NF-B 

signalling are regulated by each other or by upstream, downstream or neighbouring 

signalling molecules at the level of protein synthesis. NF-B is sometimes called a 

sequence-sequence DNA-binding factor with specificity on binding to specific sequence, 

thereby controlling the flow of genetic information from DNA to RNA. It is a heterodimeric 

protein comprising of different combinations of members of the Rel family of transcription 

factors. There are five members of the transcription factor NF-B family: RelA (p65), RelB 

and c-Rel, and the precursor proteins NF-B1 (p105) and NF-B2 (p100) which are 

processed into p50 and p52 respectively (Oeckinghaus et al., 2011). 

At resting conditions, NF-B dimers are bound to inhibitory I-kappa B (IB) proteins that 

sequester NF-B complexes in the cytoplasm. Degradation of IB by an inflammatory 

stimulus (e.g. LPS) is initiated through the phosphorylation by IB kinase (IKK) complex, 

which consists of catalytically active kinases, IKKα and IKKβ, and the regulatory subunit 

IKKγ (NEMO). Phosphorylated IB is targeted for ubiquitination and proteasomal 

degradation, releasing bound NF-B dimers to translocate into the nucleus where 

transcriptional activity of nuclear NF-B is regulated by post-translational modifications 

(PTMs). Two main activating pathways of NF-B have been reported (Oeckinghaus et al., 

2011); the classical (canonical) and alternate (non-canonical) pathways. These pathways 

are shown in Figure 4 below. Upon activation, NF-B dimers translocate from the cytoplasm 

to the nucleus. In the nucleus, they bind to the DNA and regulate transcription of pro-

inflammatory mediators. 

NF-B transcription factors are critical regulators of immunity, stress responses, apoptosis 

and differentiation (Rojo et al., 2014). NF-B dependent transcription is not only tightly 
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controlled by positive and negative regulatory mechanisms, but also closely coordinated with 

other signalling pathways, making it a complex pathway. This crosstalk is crucial to shaping 

the diverse biological functions of NF-B into cell type- and context specific responses. 

 

Figure 4: The canonical and non-canonical pathways of NF-B activation. 

Upon activation by a stimulus, NF-B dimer is released, translocate to the nucleus and cause 

transcription of NF-B genes (adapted from Oeckinghaus et al., 2014; Gerondakis et al., 2014). 

 

In the CNS, NF-B has been reported to have diverse functions. Activated NF-B can be 

transported in a retrograde fashion from activated synapses to the nucleus to translate short-

term processes to long-term changes (Kaltschmidt & Kaltschmidt, 2009). In glia cells, NF-B 

is inducible and regulates the process of inflammation that exacerbates diseases involving 

neuroinflammation. The microglia express TLR4 receptors, which upon activation by LPS 

initiates the signalling cascade leading to the translocation of p65NF-B subunit from the 

cytoplasm to the nucleus where it induces various NF-B regulated genes. Activation of NF-

B in the periphery has been found to be regulated in a similar way in the CNS supporting 

that NF-B plays a role in immune and inflammatory responses in the brain as in the 

periphery. 
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It has also been reported that NF-B levels increase as a consequence of brain injury. For 

instance, an increase in NF-B activity has been reported in ischemia (Harari & Liao, 2010). 

In addition, the potential role of NF-B in neurodegenerative diseases in which inflammation 

in the CNS is likely to be important has also been reported especially in diseases like 

multiple sclerosis (MS) and Alzheimer’s disease (AD). Moreover, certain viral infections in 

the CNS have been suggested to involve NF-B as a regulator of their transcription or in 

viral clearance. This was first shown for HIV of which the replication is implicitly dependent 

on NF-B (Hong & Banks, 2014).  

NF-B is an important signal in neurodegenerative diseases. For example, it has been 

reported that the neurotoxic peptide amyloid beta (Aβ), which is deposited in plaques of AD 

patients, can activate NF-B in glia and neuronal cells (Kaltschmidt et al., 1997). Also, NF-

B controls the expression of APP and BACE1, which enhances the formation of Aβ 

(Buggia-Prevot et al., 2008; Chami et al., 2012). Previous studies found that the activation of 

NF-B contributes to the increase in β-secretase in neuronal cells. In AD brains, increased 

levels of BACE1 and p65 NF-B has been reported (Chen et al., 2012). Chen et al. (2012) 

also reported that p65 NF-B expression leads to an increase in BACE1 transcription and 

knockout of p65 NF-B decreases gene expression of BACE1 in cells. These suggest that 

NF-B is an important transcription factor in the progression of CNS neurodegenerative 

diseases.  

1.3. p38 Mitogen-activated protein kinase (p38 MAPK) signalling  

The Mitogen-activated protein kinase-signalling pathway is used by eukaryotes to transduce 

external signals to intracellular responses (Coulthard et al., 2009). The responses are 

modulated by the MAP kinases, which include c-Jun N-terminal kinases (JNKs), extracellular 

signal- regulated kinases (ERK 1/2) and p38 isoforms. Activation of MAPKs occurs via a 

three-tiered phosphorylation cascade. Stimuli such as inflammatory cytokine or osmotic 

shock initiate GTPase-dependent activation of several upstream kinases, the mitogen-

activated protein kinase kinase kinases (MAPKKKs).  

The p38MAPK is a 38kDa polypeptide, which exists in 4 isoforms (α, β, γ, δ), which are 

encoded by separate genes, expressed in different tissues and cell types, and are often 

functionally distinct. The p38MAPKs are described as the stress-activated protein kinases as 

they are primarily activated through inflammatory insults, extracellular stresses and 

cytokines (Corrêa & Eales, 2012; Krementsov et al., 2013). p38MAPK regulates 

inflammation and cell death but has also been shown to play a non-conventional role in cell 

survival (Krementsov et al., 2013). Activated p38MAPK up-regulates cytokine production by 
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direct phosphorylation of transcription factors and downstream kinase stabilization and 

translation of mRNAs encoding for pro-inflammatory cytokines (Krementsov et al., 2013; 

Sabio & Dais, 2014). These observations have identified p38α and p38β as principal 

mediators of inflammatory response. Hence, great effort has gone into identification of p38α 

alone or both p38α and β antagonist for inflammatory disorders over the years. Although the 

p38α and p38β MAPK are both widely expressed, the p38α is the best-characterized isoform 

and the most abundant isoform (Krementsov et al., 2013). The p38MAPK is activated 

downstream from the activation of TLR activation and promote the production of multiple 

pro-inflammatory and T cell polarizing cytokines. 

The p38 MAPK pathway has been reported to play a central role in the expression and 

activity of pro-inflammatory cytokines. Upon activation by a stimulus (e.g. LPS), MAPKKKs 

phosphorylate and activate the dual specific MAPK kinases (MKKs such as MKK3, MKK4, 

and MKK6), which in turn phosphorylate p38 MAPK (Figure 5).  

 

Figure 5: p38MAPK signalling. 
Activation of TLR4 by a stimulus (e.g. LPS) activates p38MAPK through activation of MAP kinases, 

which activate p38 and regulates the production of pro-inflammatory cytokines such as TNFα and IL-6 
(adapted from Kimura et al., 2013). 
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This pathway phosphorylates and enhances the activity of many transcription factors, such 

as NF-B, ETS domain-containing protein (ELK-1), heat shock transcription factor-1 and 

SRF accessory protein 1 (SAP-1) (Myers & Shubayev, 2011). In microglia-driven 

inflammation, p38 MAPK cascades have been shown to contribute to transcriptional and 

post-transcriptional regulation of iNOS and TNFα gene expression in LPS-activated glial 

cells (Bhat et al., 1998). Previous studies have shown the importance of this signalling 

pathway in the CNS. For example, a study demonstrated that the deficiency of microglial 

p38α MAPK rescues neurons and reduces synaptic protein loss by suppressing LPS-

induced TNFα production (Xing et al., 2011). In a recent study using cortical neurons from 

wild-type or p38β knockout mice and wild-type neurons treated with two highly selective 

inhibitors of p38α MAPK, results show that neuronal p38β is not required for neurotoxicity 

induced by multiple toxic insults (Xing et al., 2014). This finding suggests the critical 

importance of microglial p38α. It has also been reported that pharmacological inhibition of 

p38α MAPK in an AD mouse model decreases brain pro-inflammatory cytokine production 

and attenuates synaptic protein loss (Munoz & Ammit, 2010). These research findings 

demonstrate that microglial p38α MAPK-mediated TNFα and interleukin overproduction is 

crucial to inflammation-induced neurotoxicity. Therefore, inhibition of p38α MAPK signalling 

is crucial in modulating neuroinflammation. p38MAPK signalling shares a common signalling 

node with NF-B signalling, TNF receptor associated factor (TRAF). There are seven 

members of the TRAF family (TRAF1-7) defined by the presence of domains, which 

mediates binding to receptor and signalling mediators. TRAF6 represents a central point of 

divergence for activation of NF-B and p38MAPK signalling pathways (Figure 6) through toll-

like receptor (TLR) 4 signalling.  

In TLR4 signalling, TRAF6 induces activation of TAK1, a mitogen activated protein kinase 

kinase kinase kinase (MAPK3K), to trigger activation of both AP-1 (p38MAPK) and NF-B. 

This activation shows that NF-B and p38MAPK represent common outcomes of TRAF-

dependent signalling but the underlying regulatory mechanisms differ (Oeckinghaus et al., 

2011). 
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Figure 6: Convergence point for p38MAPK and NF-B through TRAF6-dependent signalling. 
In Toll-like receptor (TLR) signalling, upon activation of TLR4 by LPS, TRAF6 induces activation of 

TAK1, a MAPK3K, to trigger activation of both AP-1 (p38MAPK) and NF-B. This subsequently leads 
to the production of proinflammatory mediators (adapted from Kimura et al., 2013). 

 

1.4. Nuclear factor [erythroid-derived 2]-like 2 (Nrf2) antioxidant signalling pathway 

After the M1 (pro-inflammatory) phase in microglial activation, the microglia transits into the 

M2 phase which is responsible for remodelling and restoration of homeostasis. The nuclear 

factor [erythroid-derived 2]-like 2 (Nrf2) signalling pathway regulates the M2 phase. 

Nrf2 transcription factor is widely expressed in human and mouse tissues (Hayes & Dinkova-

Kostova, 2014). Nrf2 controls the expression of many Phase I and Phase II drug 

metabolising enzymes (Hayes & Dinkova-Kostova, 2014). Nrf2 detoxifies ROS mainly 

through the transactivation of a series of genes known as antioxidant response elements 

(AREs) (Xiang et al., 2014). These genes are responsible for the expression of antioxidants 

and phase 2 detoxifying enzymes such as NAD (P) H: quinone oxidoreductase 1 (NQO1), 

glutathione S-transferase (GST), heme oxygenase-1 (HO-1) and glutathione peroxidase, 

which maintain cell homeostasis (Hayes & Dinkova-Kostova, 2014; Niture et al., 2014). 
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Nrf2 belongs to the cap ‘n’ collar (CNC) family of basic region leucine zipper transcription 

factors. Nrf2 comprises of seven highly conserved domains called Nrf2-ECH homology 

domains 1-7 (Neh1 – 7). Kelch ECH Associated Protein 1 (Keap1) binds to Nrf2 in the 

cytoplasm under normal conditions. Keap1 is a cytoskeleton protein predominantly present 

in cytosol, and it acts as a stress sensor and negative repressor of Nrf2 (Xiang et al., 2014). 

It is also capable of binding actin filaments (Bellezza et al., 2010). Nrf2 in its bound form to 

Keap1 is targeted towards ubiquitination and subsequent proteasomal degradation in a 

Keap1-dependent fashion. The interaction between Nrf2 and Keap1 occurs via a ‘two-site 

tethering’ mechanism, otherwise known as the ‘hinge and latch’ mechanism (Rojo et al., 

2014). At oxidative conditions, Nrf2 is released from Keap1 repression, translocate to the 

nucleus, forms a heterodimer with small Maf proteins, recognizes and binds to ARE 

promoter site in nucleus encoding detoxifying and antioxidant enzymes such as HO-1, GSH, 

SOD and NADPH: quinone oxidoreductase. Protein phosphorylation, as the major post-

translational mechanism in signalling processes, has a central role in regulating the Nrf2 

liberation process, stability, and nuclear translocation. Phosphorylation stabilises Keap1, de-

phosphorylation promotes rapid degradation of Keap1 and hence stabilization of Nrf2 

(Bellezza et al., 2010). Under unstressed condition, Nrf2 is constantly degraded via Keap1-

mediated ubiquitination that is counter balanced by constitutive Nrf2 translocation.  

Keap1-mediated ubiquitination is impeded under oxidative conditions, while Nrf2 nuclear 

translocation is elevated. This results in the expansion of the pool of free Nrf2 proteins. The 

nuclear influx of Nrf2 is still determined by the intensity of oxidative stress and Keap1 still 

modulates the redox-sensitivity of Nrf2 by controlling the availability of free Nrf2 proteins 

(Xiang et al., 2014). HO-1 is implicated mainly in immunomodulation. Induction of HO-1 

protects cells from oxidative stress-related cytotoxicity and apoptotic cell death.  

1.4.1. Interaction(s) between Nrf2 and NF-B 

Induction of Nrf2 by compounds of different chemical classes is directly correlated to the 

inhibition of COX-2 and iNOS expression (Baird & Dinkova-Kostova, 2011; Liu et al., 2008). 

However, the anti-inflammatory effects of these molecules are only partially Nrf2-dependent 

and the exact relationship between Nrf2-induction and anti-inflammatory properties remains 

to be clarified. Nrf2-deficient mice, subjected to a moderately severe head injury, show 

greater cerebral NF-B activation compared with wild-type animals (Jin et al., 2008). 

Induction of Nrf2 over expression has been shown to suppress NF-B-DNA binding activity 

(Song et al., 2009). In addition, NF-B p65 subunit represses the Nrf2-ARE pathway at 

transcriptional level (Bellezza et al., 2010). This suggests an interaction between the Nrf2 

and NF-B signalling pathways. 
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Studies on hippocampus of LPS-treated mice have shown that deletion of Nrf2 gene results 

to an increase in inflammatory markers (iNOS, IL-6 and TNFα) in microglial cells 

(Innamorato et al., 2008). In addition, Nrf2 activation results in a decrease in LPS-induced 

activation of p38 and inflammatory markers (TNFα, IL-1β, IL-6, PGE2 and NO) in microglial 

cells (Koh et al., 2009).  

Therefore, agents that activate Nrf2 and inhibit NF-B may be beneficial in the treatment of 

chronic neuroinflammatory diseases. 

1.5. Neuroinflammation in diseases  

1.5.1. Alzheimer’s disease (AD) 

Alzheimer’s disease, which is the most common form of dementia, is one of the most 

common age-related neurodegenerative diseases (Alzheimer’s-Association, 2014). The 

symptoms of AD are characterised by memory loss, progressive impairment of cognition and 

various behavioural and neuropsychiatric disturbances (Nordberg, 2014). The pathological 

hallmarks of AD in the brain include extracellular amyloid plaque comprising aggregated, 

cleaved products of amyloid precursor protein (APP) and intracellular neurofibrillary tangles 

(NFTs) generated by hyper phosphorylated forms of microtubule-binding protein tau 

(Holtzman et al., 2011). 

The observation that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) protects the 

brain from the onset or progression of neurodegenerative diseases especially AD has been 

a great link in pointing neuroinflammation to AD (Hoozeman et al., 2011). The evidence of 

an inflammatory response in AD includes changes in microglia morphology – from ramified 

(resting) to amoeboid (active) and astrogliosis (manifested by an increase in the number, 

size and motility of astrocytes surrounding the senile plaques (Glass et al., 2010). They also 

reported that the microglia surrounding the plaques stained positive for activation markers 

and pro-inflammatory mediators, including MHC class IIl, COX-2, monocyte chemo-

attractant protein 1 (MCP-1), and pro-inflammatory cytokines TNFα, IL-1β and IL-6. A recent 

study on several innate genes in genome-wide association studies (GWAS) of AD 

demonstrated a causal relationship between inflammation and the disease (Escott-Price et 

al., 2014). 

Aβ aggregates as well as products derived from dead cells can trigger microglia and 

astrocytes through TLR and RAG-dependent pathways leading to local inflammation (Liu et 

al., 2012) (Figure 7). The local inflammation may further amplify neuronal death in the CNS. 

The activation of signal-dependent transcription factors such as NF-B (Srinivasan & Lahiri, 

2015) and AP-1 by various trigger (including possibly Aβ) could result in the production of a 
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vast array of amplifiers including the pro-inflammatory cytokines (Glass et al., 2010). The 

pro-inflammatory cytokines TNFα and IL-6 produced from the activation of the microglia may 

act directly on neurons to induce apoptosis. It may also act on astrocytes activating NF-B 

and p38MAPK signalling. This further activation can generate proinflammatory cytokines, 

which may also act directly on neurons to induce apoptosis. On the other hand, the factors 

released by the astrocytes can also activate the microglia there by causing a vicious cycle 

that eventually leads to neuronal death. These evidences highlight the huge role played by 

TNFα and IL-6 in neuroinflammation in AD.  

 

Figure 7: Inflammatory components in Alzheimer's disease (adapted from Glass et al., 2010). 

 

1.5.2. Parkinson’s disease (PD) 

Parkinson’s disease is the second most common neurodegenerative disease after AD 

(Gandhi & Wood, 2010). It is also the most common movement disorder. The prominent 

clinical features are motor symptoms (such as bradykinesia, tremor, rigidity and postural 

instability) and non-motor-related symptoms (such as olfactory deficits, autonomic 

dysfunction, depression, cognitive deficits, and sleep disorders) (Shulman et al., 2010). 

Similar to AD, PD is a proteinopathy; characterized by the accumulation and aggregation of 

misfolded α-synuclein (Breydo et al., 2012). The neuropathological hallmarks are 

intracellular inclusions containing α-synuclein called Lewy bodies and Lewy neuritis and the 
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loss of dopaminergic neurons in the substantia nigra of the midbrain and in other brain 

regions as well (Breydo et al., 2012; Glass et al., 2010). Microglial activation and an increase 

in astroglia and lymphocyte infiltration also occur in the neuropathological alteration in PD 

outside the loss of dopaminergic neurons. Microglial activation leads to the production of 

various pro-inflammatory mediators. 

 

Figure 8: Inflammatory components in Parkinson's disease (adapted from Glass et al., 2010). 

 

These inflammatory mediators such as ROS, NO, TNFα and IL-1β derived from the 

microglia modulate the progression of neuronal cell death in PD (Hald & Lotharius; 2005, 

Tansey & Goldberg, 2010) (Figure 8). The inflammatory mediators generated from microglial 

activation also activate the astrocytes. The combination of the various factors that are 

produced in both the activated microglia and astrocyte in turn may cause neurotoxicity 

(Tansey & Goldberg, 2010). 

In addition, PD-associated activated microglial cells release NO produced by iNOS as well 

as ROS. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the major 

source of ROS production in activated microglia in PD (Hunot et al., 1996) (Figure 8). 

Microglial cells phagocytise the extracellular α-synuclein, resulting in the activation of 

NADPH oxidase and ROS production (Zhang et al., 2005). The nitration of α-synuclein 

induced by oxidative stress is also a potent inducer of microglial activation. These different 

activators of the microglia in PD facilitate neuroinflammation subsequently leading to 
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neuronal death. Recently, it has been reported that microglial activation influences neuronal 

function in PD dementia (Fan et al., 2014). This observation further confirms the influence of 

neuroinflammation on surrounding neurons in PD. 

1.5.3. Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS) (also known as Lou Gehrig’s disease) is a progressive 

fatal neurodegenerative disease that affects motor neurons in the brainstem, spinal cord, 

and motor cortex (Hooten et al., 2015). The clinical features of ALS involve degeneration of 

motor neurons producing fasciculation, muscle wasting and weakness, increased spasticity 

and hyper-reflexia (Ajround-Driss & Siddique, 2015; Maniecka & Polymenidou, 20015). ALS 

is universally fatal, with a median age of onset of 55years and a survival of 2-5 years after 

the onset of symptoms (Glass et al., 2010). 

 

Figure 9: Inflammatory components in Amyotrophic Lateral Sclerosis (adapted from Glass et al., 
2010). 

 

Majority of ALS cases are sporadic with only 10% of the cases familial. The major 

determinants of motor neuron death in ALS are yet to be established. However, the motor 

neuron death is ALS could be as a consequence of multiple factors. Although the main cells 

affected are motor neurons, there is increasing evidence that neighbouring glia cells are 
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involved during the pathogenesis of the disease (Clement et al., 2003; Yamanaka et al., 

2008). 

There is a possibility that toxic aggregates in ALS can induce inflammatory responses in 

microglia via TLR and CD14. Therefore, neuroinflammation in this case might be involved in 

the disease progression.  Activated microglia cells can activate astrocytes by producing 

cytokines, NO and ROS. Activated microglia and astrocytes amplify the damage in the motor 

neurons by further activation of the NF-B and p38MAPK signalling pathways in the 

microglia and astrocytes. The dying motor neurons release ATP, which can activate 

microglia though, purinergic receptor P2X ligand-gated ion channel 7 (P2RX7) expressed by 

the microglia (DiVirgilio et al., 2009) (Figure 9). This further activates the microglia resulting 

in a vicious cycle thereby increasing the chronicity of neuroinflammation. 

1.5.4. Multiple sclerosis 

Multiple Sclerosis (MS) is a heterogeneous and complex autoimmune disease that is 

characterized by inflammation, demyelination and axon degeneration in the CNS (Naegele & 

Martin, 2014). Recently, neuroinflammation has been implicated in the demyelination of the 

neurons (Ellwardt & Zipp, 2014). The cause is from a primary defect in the immune system 

that targets components of the myelin sheath, thereby resulting in secondary effects on the 

neurons. MS predominantly affects young adults and 2-3 times more in females than in 

males (Glass et al., 2010). 

Both the innate and acquired immune systems play a part in the pathology of MS. 

Dysfunction of the BBB, migration of immune cells into the CNS and attack of antigens on 

neurons and oligodendrocytes account for the major inflammatory events in MS (Ellwardt & 

Zipp, 2014). Immune cells outside the CNS such as dendritic cells have been reported to 

play a role in the pathogenesis of MS (Naegele & Martin, 2014). Also, CNS inflammatory 

cells, microglia and astrocytes, play a role in progression of MS (Miljkovic et al., 2011). 

Bacterial infection, viruses or other environmental stimuli activate the microglia in MS 

(Kakalacheva & Lunemann, 2011). Upon activation, the microglia cells produce inflammatory 

mediators through the NF-B (Srinivasan & Lahiri, 2015) and p38MAPK signalling pathways. 

Naïve T cells recognise the myelin-derived antigen-presented by antigen-presenting cells. In 

the presence of inflammatory mediators like IL6 and TGF-β, the naïve T cells are induced to 

express retinoic acid-related orphan receptor γt (RORγt) and differentiate to T helper 17 

(Th17) cells (Korn et al., 2009). Activated microglia and astrocytes also secrete inflammatory 

cytokines (Interleukin 13 (IL-13)), which induces the differentiated Th17 cells to produce 

proinflammatory cytokines (including TNFα). This results in the damage of the myelin 

sheaths, which protects the nerve axons. This leads to demyelination of the neurons. In 
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addition, the astrocytes when activated secrete B-cell activating factor (BAFF), a survival 

factor for auto reactive B cells (Dalakas, 2008), which in turn differentiate into plasma cells 

and produce anti-myelin antibodies. ROS and NO are also generated by the microglia and 

the astrocyte. These inflammatory mediators also contribute to the damage caused on the 

neurons and in the destruction of the myelin sheaths on the neurons (Ellwardt & Zipp, 2014). 

Microglial activation with LPS has been reported to cause an increased production of ATP 

which signals to astrocytes to produce increased excitatory postsynaptic current in 

hippocampal neurons (Pascual et al., 2012). Therefore, the activation of microglia cells 

subsequently influences surrounding cells, including astrocytes and neurons. 

1.6. Artemisinin and its derivatives 

Artemisinin (Figure 10) is a natural product isolated from the Chinese herb Artemisia annua 

(‘qinghao’ or sweet wormwood) identified in 1972 during the Vietnam War by Tu Youyou a 

Chinese scientist from the Chinese Academy of Traditional Chinese Medicine (Miller & Su, 

2011; Neill, 2011). Artemisinin has also been isolated from other Artemisia species such as 

A. scoparia (Singh & Sarin, 2010). It is a sesquiterpene lactone (SL) with well-known 

antimalarial activity. Sesquiterpene lactones have been isolated from numerous genera of 

the asteraceae family and are described as the active constituents of a variety of medicinal 

plants, which are used in traditional medicine for the treatment of inflammatory diseases 

(Hall et al., 1979; Hall et al., 1980). Artemisinin was first reported in 1979 but biological 

chemists were puzzled by the apparent stability of the hitherto unknown 15-carbon 

(sesquiterpene) peroxide structure (White, 2008). Hence, a full chemical synthesis was 

conducted subsequently and four years later reported. 

Artemisinin, which has been used in traditional Chinese medicine for over 2 millennia, still 

remains one of the ‘gems’ of traditional Chinese medicine (Efferth et al., 2008). It is still one 

of the most promising natural products investigated in the past two decades. Over the years, 

a couple of semi-synthetic derivatives of artemisinin have been made including artemether 

and artesunate (Figure 10). Most of the derivatives of artemisinin have been reported to be 

useful in the treatment of malaria. Today, artesunate, artemether and arteether are the more 

widely used derivatives of artemisinin (Ho et al., 2014). 
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Figure 10: Artemisinin (1) and derivatives dihydroartemisinin (2), artemether (3), arteether (4), 
artesunate (5) and artelinate (6).  

Circled in green is the lactone ring while the ring circled in yellow is the trioxane ring (Woodrow et al., 
2005). 

  

1.6.1. Structure and chemistry of artemisinin and its derivatives- artemether and 

artesunate. 

 The IUPAC name, molecular formula, molar mass and other properties of artemisinin and its 

derivatives artemether and artesunate are shown in table 1 below. Artemisinin has a 

tetracyclic structure with a trioxane ring and a lactone ring. The trioxane ring contains a 

peroxide bridge, the active moiety of the molecule. Reduction of artemisinin derivatives to 

dihydroartemisinin give rise to a chiral centre, that may ultimately lead to the formation of 

‘prodrugs’ which could be oil soluble or water soluble (O’Neill & Posner, 2004). The most 

accessible site in artemisinin is the lactone group. 
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Table 1: Details of some properties of artemisinin and its derivatives artemether and artesunate. (* 
Log D value of artemisinin was not reported in literature). 

Compound IUPAC name Molecular 

formula 

Molar Mass  Log P Log D 

Artemisinin (3R, 5aS, 6R, 8aS, 9R, 12S, 

12aR)-octahydro-3, 6, 9 – 

trimethyl-3, 12-epoxy-12H-pyrano 

[4, 3-j]-1, 2-benzodioxepin-

1093H)-one 

C12H22O5 282.332g/mol 2.94 

(Abraham 

and 

Acree, 

2013) 

* 

Artemether  (1R,4S,5R,8S,9R,10S,12R,13R)- 

10-methoxy-1,5,9-trimethyl-

11,14,15,16-

tetraoxatetracyclo[10.3.1.0^(8,13)]

hexadecane 

C16H26O5 298.3746g/mol 3.53 

(Avery et 

al., 1995) 

3.1 

(Schlagenhauf-

Lawlor, 2007) 

Artesunate (3R,5aS,6R,8aS,9R,10S,12R,12a

R)-Decahydro-3,6,9-trimethyl-

3,12-epoxy-12H-pyranol [4,3-j]-

1,2-benzodioxepin-10-ol, hydrogen 

succinate 

C19H28O8 384g/mol 2.77 

(Avery et 

al., 1995) 

-9.3 x 10-2 

(Schlagenhauf-

Lawlor, 2007) 

 

Reduction of artemisinin by sodium borohydride produced dihydroartemisinin in which the 

lactone group is converted to a lactal group (D’Acquarica et al., 2010). Ether substitution 

gives artemether, which is oil soluble. The water-soluble derivative artesunate is the 

succinate ester of dihydroartemisinin. Currently, artemisinin and its derivatives artesunate, a 

water-soluble derivative, and artemether, an oil soluble derivative, are the most important 

drugs for the treatment of malaria and are used in artemisinin-based combination therapies 

(ACTs) recommended by the World Health Organization (Breman et al., 2007). The strength 

of artemisinin and its derivatives in antimalarial therapy lies in their unique chemical 

structures, which differ from the standard quinolone (Ho et al., 2014). 

Artemisinin and its derivatives kill the asexual stages of parasite development in the blood 

and also affect the sexual stages of Plasmodium (P) falciparum (gametocytes), which 

transmit the infection to others. Artemisinin derivatives are also used in cerebral malaria, one 

of the most severe complications of P. falciparum infections (Pasvol, 2005). A clinical trial 

done in China of which some of the patients had cerebral malaria showed that artemisinin 

and its derivatives were effective in treating malaria including cerebral malaria (Li et al, 

1994). In another study by Hien et al (1992), artemisinin suppositories, intravenous 

artesunate and intravenous quinine were compared in the treatment of cerebral malaria. 

Findings from the study suggested that artemisinin suppositories are as effective as 
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artesunate and quinine given intravenously. These studies suggest that artemisinin and its 

derivatives might be able to cross the blood-brain barrier. However, there is a possibility that 

mostly dihydroartemisinin penetrate into the CNS.   

Cerebral malaria is mostly characterized by hyper-parasitaemia and excessive production of 

type 1 pro-inflammatory cytokines followed by up-regulation of endothelial cell adhesion 

molecule expression which contributes to the sequestration of parasitized erythrocytes in the 

brain microvasculature (Mimche et al., 2011; Schofield & Grau, 2005). Research finding 

suggests that in cerebral malaria, trypsin-resistant membrane components and soluble 

factors of Plasmodium falciparum-infected red blood cells contribute to the impedance of the 

blood brain barrier (BBB) in a multistep and multifactorial process (Tripathi et al., 2007). This 

suggests that the integrity of the BBB is compromised for artemisinin and its derivatives to 

permeate into the CNS to exert action. In another study by Coghi et al (2009), the interaction 

of artemisinin and its derivatives with oxyhemoglobin Hb-FeII, Hb-FeII, carboxyHb-FeII, 

heme-FeII and carboxyheme FeII have been suggested to play an important role in the 

mode of action in cerebral malaria. In a recent study, artemisinin derivatives have been 

reported to inhibit metalloproteinase-9 (MMP9) proteins, which play a role in the 

pathogenesis of cerebral malaria by destroying endothelial tight junctions and increasing 

BBB permeability (Magenta et al., 2014). It has also been reported that p-glycoprotein which 

plays a role in BBB permeability, is inhibited by artemisinin derivatives (Davis et al., 2003; 

Steglich et al., 2012). There has been no report on the effect of the parent compounds on 

the inhibition of MMP9 and p glycoprotein. However, reports done by Coghi et al (2009) 

suggest artemisinin does permeate the BBB. These highlight the need for further 

investigation of the permeability of these drugs and / or their metabolite DHA into the CNS. 

1.6.2. Artemisinin Metabolism  

Artemisinin derivatives are metabolised primarily to a principal metabolite dihydroartemisinin 

(DHA) and then to inactive metabolites through hepatic cytochrome P-450 and other enzyme 

systems (Golenser et al., 2006; O’Neil & Posner, 2004). Conversion to DHA differs between 

derivatives at varying rates (Woodrow et al., 2005). However, artemisinin itself is not 

metabolised to DHA  (Golenser et al., 2006). Artesunate is hydrolysed to DHA rapidly by 

CYP2A6 while artemether is slowly demethylated to DHA by CYP3A4 and CYP3A5 and 

arteether is converted to DHA slowly by CYP3A4 (Golenser et al., 2006). DHA is further 

converted to inactive metabolites through glucuronidation, which is catalysed by UDP-

glucuronosyltransferase (Woodrow et al., 2005). Other metabolites including 

deoxyartemisinin, deoxydihydroartemisinin and 9, 10-dihydrodeoxyartemisinin, which lack 

the endoperoxide bridge, are inactive and are excreted when metabolised. A diagram on the 

metabolism of artemisinin is shown in Figure 11. 
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Figure 11: Metabolism of artemisinin and its derivatives (adapted from Woodrow et al., 2005; 
Golenser et al., 2006). 

 

The metabolism artemisinin derivatives to DHA may affect the bioavailability and activity of 

the drugs. For example, artesunate is rapidly metabolised while artemether is converted to 

DHA slowly. Some pharmacokinetics data of the drugs are shown in table 2 below. 

 

 

Artemisinin has a low bioavailability and high protein binding of 80% (Balint, 2001). This 

might affect the activity of the drug. It is important to note that artesunate has a high 

bioavailability of 82% while dihydroartemisinin has a bioavailability of 85%. On the other 

hand, artemether has a 54% bioavailability and longer elimination half-life. These 

pharmacokinetics data give an insight what happens to the drug upon absorption. It is 

important to note that all the drugs are rapidly absorbed. 

Table 2: Some pharmacokinetics parameters of artemisinin and derivatives (Balint, 2001). 
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1.6.3. Anti-inflammatory actions of artemisinin, artemether and artesunate 

Previous researches investigated the effect of artemisinin in various models of inflammation. 

Artemisinin and its derivatives have been shown to be effective in autoimmune diseases, 

allergic inflammation and septic inflammation (Ho et al., 2014). Artemisinin and its 

derivatives have also been proven very efficient in the treatment of cerebral malaria as they 

can inhibit TNF and NO production (Shakir et al., 2011). Among the family of artemisinin 

derivatives, artesunate is the most studied analogue of artemisinin. This is due to the 

addition of a hemi-succinate group, which confers substantial water-solubility and high oral 

bioavailability, which results to a more favourable pharmacological profile (Ho et al., 2014). 

However, there has not been a comprehensive study on the effect of the artemisinin or its 

derivatives artemether and artesunate in LPS-activated BV2 microglia cells, a model of 

neuroinflammation.  

In macrophages, artemisinin and its derivatives artesunate and artemether diminish the 

secretion of macrophage-derived proinflammatory cytokines particularly TNF. Artemisinin 

and its derivatives have been found to interrupt signalling pathways especially the NF-B 

system involved in the expression of genes related to cytokine production, inflammation, 

adhesion molecules and apoptosis in vivo (Pahl, 1999). In another study on the evaluation of 

the role of the NF-B system in hemozoin- and 15-HETE-mediated activation of matrix 

metalloproteinase-9 (MMP-9), artemisinin was reported to abolish NF-B-mediated and 

MMP-9 related enhanced release of TNF and IL-1β in human adherent monocytes (Prato et 

al., 2010). In an in vivo study using mouse models, artesunate has been shown to produce 

inhibition of TNFα (Li et al., 2010). In addition, artemisinin and its derivatives have been 

shown to inhibit NO production. In a study in RAW 264.7 cells, artesunate significantly 

inhibited NO production and iNOS mRNA expression (Konkimalla et al., 2008). Also 

artemisinin has been reported to supress iNOS mRNA expression and NO production in 

LPS-activated macrophages (Kang et al., 2010). Kang et al (2010) observed that the 

suppression of NO/iNOS was due to inhibition of IFN-β production and blockage of striated 

muscle activator of rho (STAR)-1 signalling rather than NF-B degradation. Artemisinin has 

been reported to inhibit TNFα and IL-6 production in a dose- and time-dependent manner. In 

animal models of sepsis induced by CpG-Oligodeoxynucleotide (CpG-ODN), LPS, heat-

killed E. coli 35218 or live E. coli in RAW 2647 cells, artemisinin produced potent anti-

inflammatory effects with inhibition of NF-B activation as a possible mechanism (Wang et 

al., 2006). 

The water-soluble derivative artesunate has been reported to possess immunomodulatory 

properties as well as anti-inflammatory properties in experimental colitis. Most recently, it 
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was reported to activate Nrf2 pathway and suppress NO/iNOS production in activated BV2 

microglia (Lee et al., 2012). Artemether, the oil-soluble derivative, which is also known as 

dihydroartemisinin methyl ether, has been shown to have anti-inflammatory effect in mouse 

model of colitis (Wu, 2011).  

As mentioned in section 1.6.2, artemisinin derivatives are metabolised to the active 

compound DHA. Reports have also shown that DHA possess anti-inflammatory actions. In a 

study by Yu et al (2012), it was reported that artemisinin and DHA inhibited proinflammatory 

cytokines TNFα and IL-6 as well as iNOS mediated NO production in RAW264.7 cells 

following stimulation with LPS. DHA has also been reported to inhibit inflammation in 

RAW264.7 cells following stimulation with phorbol ester (Kim et al., 2013). 

There has also been suggestion that artemisinin and its derivatives might be neurotoxic. This 

raises a question on the suitability of these compounds. For instance, in a study by Classen 

et al (1999) neuronal and secondary axonal damage was observed in dogs. It is important to 

note that the neurologic signs were observed at high doses only. Therefore, lower 

concentrations are potentially safe. In a review by Woodrow et al (2005) it has been noted 

that despite pre-clinical evidence of toxicity in brainstem in animals, no major toxicity to 

humans have been documented. This highlights a discrepancy between animal and human 

toxicity. This also suggests that artemisinin and its derivatives are safe. However, there is 

also the need for all drugs to be monitored for toxicity. In addition, reported neurotoxicity 

might be due to the formation of free radicals, which is a proposed mechanism for 

artemisinin and its derivatives (Li & Zhou, 2010). Studies by Schmuck et al. (2002) 

suggested that artemisinin might have induced neurotoxicity by inhibition of mitochondrial 

function and induction of oxidative stress. These reports suggest the need to monitor the 

concentrations used to ensure toxicity does not account for the anti-inflammatory actions 

observed. However, it is also important to note that the possible concentrations to be used 

for these compounds in neuroinflammatory conditions should be different from that used in 

malaria or cerebral malaria as these are two different indications. Hence, in this study 

possible signs of toxicity would be monitored using the MTT assay. 

1.7. In vitro models of Neuroinflammation 

Various approaches have been developed over the years to investigate neuroinflammation 

in vitro. These models have been developed to achieve the aims of the national centre for 

the replacement, refinement and reduction of animals in research.  

A very common approach is the use of lipopolysaccharide (LPS) to activate toll-like receptor 

in microglia cells (Lull & Block, 2010; Olajide et al., 2013). It involves the stimulation of 

mono-layer culture of glial cells with LPS. This proven model is cost effective and easy to 
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run. It is very effective in the measurement of various parameters involved in 

neuroinflammation. However, a major limitation for this model is the inability to investigate 

the role relationship between the microglia and neurons. Another model which addresses 

this limitation involves the use of LPS to activate microglia cells is microglia-neuron co-

cultures (Gresa-Arribas et al., 2012). An advantage of the microglia-neuron co-culture is the 

provision of an avenue to measure neuroprotective effects of anti-inflammatory compounds 

in vitro. Therefore, the microglia-neuron co-culture is a useful model for both the study of 

neuroinflammation and neuroprotection in vitro. Although this approach is solely in vitro, it is 

an expensive model. The use of organotypic membrane culture of postnatal rat hippocampal 

slices is another in vitro model to investigate neuroinflammation (Huuskonen et al., 2005). 

This approach does reduce the number of animals used however it still involves some 

animals. In addition, this approach is expensive. Another approach is a model that involves 

the induction of interleukin-6 in murine astrocytes with Theiler’s murine encephalomyelitis 

virus (Rubio et al., 2011). An advantage of this model is that it blocks out oestrogen, which 

plays a role in neuroinflammation. However, it is limited because it has used astrocytes 

instead of microglia, which is widely accepted, as the main glia cell involved in 

neuroinflammation. These various models have their advantages and disadvantages and 

can be used for the study of neuroinflammation depending on the experimental design. 

In this present study, in other to understand the effect of artemisinin and its derivatives in 

neuroinflammation, LPS-activated BV2 microglia, an in vitro model was used because it is 

cost effective. In addition, it provides an adequate model to study molecular mechanism of 

action of the compounds. 

1.8.  Gap in knowledge 

Several studies have shown that artemisinin, artemether and artesunate possess anti-

inflammatory activity. However, there is no detailed evidence that the drugs could inhibit 

neuroinflammation in LPS-activated microglia cells. Also, the exact mechanism(s) of anti-

neuroinflammatory action of these drugs are not fully understood. 

1.9 Aims and objectives 

1.9.1 General aim 

The study aims to investigate the effects of artemisinin, artemether and artesunate in LPS-

activated microglia. 

1.9.2 Specific Objectives 

The specific objectives of the research were: 
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1. To investigate the effects of artemisinin, artemether and artesunate on 

neuroinflammation in LPS-activated BV2 microglia. 

2. To determine whether these compounds produce inhibition of neuroinflammation 

through interference with NF-B and/or p38 MAPK signalling, and 

3. To explore the role of Nrf2/HO1 antioxidant protective mechanism in the anti-

neuroinflammatory effects of the compounds.  

1.10 Structure of thesis 

In this thesis the various objectives that have been identified in section 1.8.2 will be 

investigated for the different compounds artemisinin, artemether and artesunate.  

Chapter 2 will focus on the general methods that were employed for investigating the three 

compounds. Studies on artemisinin, artemether and artesunate will be reported in chapters 

3, 4, and 5 respectively and results discussed briefly at the end of each chapter. Chapter 6 

will discuss results obtained from the research, their implications to knowledge and drug 

discovery.  
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CHAPTER 2 

GENERAL METHODOLOGY 
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2. General Methodology 

2.1. Cell culture 

2.1.1. BV2 cell culture 

BV2 mouse microglia cells ICLC ATL03001 (Interlab Cell Line Collection, Banca Bilogica e 

Cell Factory, Italy) were maintained in RPMI 1640 medium with 10 % heat-inactivated foetal 

bovine serum (FBS) (Sigma-Aldrich, Dorset, UK), 2 mM l-glutamine (Sigma-Aldrich, Dorset, 

UK), 100 U/ml penicillin and 100 mg/ml streptomycin (P/S) (Sigma-Aldrich, Dorset, UK) in a 

5% CO2 incubator. BV2 cells are semi-adherent cells. They were sub-cultured 1:10 when 

they reached confluence. To achieve this, suspended cells were collected into a 50 ml tube 

(Sarstedt, Dorset, UK). Adherent cells were harvested from the flask by incubating cells at 

37°C with 2 ml of 0.25 % trypsin/EDTA solution (Sigma-Aldrich, Dorset, UK) for 1 minute 

after washing with phosphate buffered saline (PBS) (Sigma-Aldrich, Dorset, UK). After 

1 minute incubation, trypsin/EDTA was neutralised by adding 8ml of complete RPMI 1640 

medium containing 10 % heat-inactivated foetal bovine serum (FBS) (Sigma-Aldrich, Dorset, 

UK), 2 mM l-glutamine (Sigma-Aldrich, Dorset, UK), 100 U/ml penicillin and 100 mg/ml 

streptomycin (P/S) (Sigma-Aldrich, Dorset, UK).  Harvested adherent cells were collected 

into 50ml tube containing suspended cells. Cells were centrifuged and culture media 

supernatants aspirated out. Cells were re-suspended in 10 ml of RPMI 1640 medium 

containing 10 % heat-inactivated foetal bovine serum (FBS) (Sigma-Aldrich, Dorset, UK), 

2 mM l-glutamine (Sigma-Aldrich, Dorset, UK), 100 U/ml penicillin and 100 mg/ml 

streptomycin (P/S) (Sigma-Aldrich, Dorset, UK). Subsequently, BV2 cells were sub-cultured 

into a new flask by adding 1 ml of cell suspension to 9ml od RPMI 1640 medium containing 

10 % heat-inactivated foetal bovine serum (FBS) (Sigma-Aldrich, Dorset, UK), 2 mM l-

glutamine (Sigma-Aldrich, Dorset, UK), 100 U/ml penicillin and 100 mg/ml streptomycin (P/S) 

(Sigma-Aldrich, Dorset, UK) and grown at 37°C in a 5 % CO2 incubator. After 48 hours, 

media was replaced. BV2 cells were used from passage 4 to passage 18. 

For experimental purposes, cells were counted using a haemocytometer following harvesting 

and seeded out in 96-well (seeding density: 0.0125 x 106 cells per well), 24-well (seeding 

density: 0.05 x 106 cells per well), 12-well (seeding density: 0.1 x 106 cells per well) or 6-well 

(seeding density: 0.3 x 106 cells per well) tissue culture plates as required, at 2 x 105 cells/ml 

and incubated for 48 hours at 37°C. Tissue culture plates used are transparent, adherent 

surface, non-polygenic, non-cytotoxic polystyrene flat well plates from Sarstedt (Leicester, 

UK). At 70% confluence, media was replaced with serum free RPMI 1640 and incubated at 

37°C for 3 hours prior to experiments.  
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Other consumables like sterological pipettes (5ml, 10ml and 25ml), pipette tips (10µl, 200µl, 

and 1ml), microcentrifuge tubes (or eppendorf tubes; 1ml) and cell scrappers were obtained 

from Sarstedt (Leicester, UK). 

2.1.2. Human Embryonic Kidney (HEK) 293 cell culture 

HEK 293 cells (European Collection of Cell Cultures, Cat no: 85120602, Salisbury, UK) were 

maintained in MEM medium with 10 % foetal bovine serum (FBS) (Sigma-Aldrich, Dorset, 

UK), 2 mM l-glutamine (Sigma-Aldrich, Dorset, UK), 100 U/ml penicillin and 100 mg/ml 

streptomycin (Sigma-Aldrich, Dorset, UK) in a 5 % CO2 incubator. HEK 293 cells are fully 

adherent cells. Cells were sub-cultured 1:8 when they reached confluence. To achieve this, 

MEM media was aspirated out of the flask containing cells and washed with PBS (Sigma-

Aldrich, Dorset, UK). Subsequently, 2 ml of 0.25 % trypsin/EDTA solution (Sigma-Aldrich, 

Dorset, UK) was added to adherent cells and incubated at 37°C for 1 minute. Thereafter, 

8ml of MEM medium with 10 % foetal bovine serum (FBS) (Sigma-Aldrich, Dorset, UK), 

2 mM l-glutamine (Sigma-Aldrich, Dorset, UK), 100 U/ml penicillin and 100 mg/ml 

streptomycin (Sigma-Aldrich, Dorset, UK) was added. Cell suspension was collected into a 

50ml tube (Sarstedt, Leicester, UK), centrifuged and re-suspended in 10ml of MEM medium 

with 10 % foetal bovine serum (FBS) (Sigma-Aldrich, Dorset, UK), 2 mM l-glutamine (Sigma-

Aldrich, Dorset, UK), 100 U/ml penicillin and 100 mg/ml streptomycin (Sigma-Aldrich, Dorset, 

UK). Media was replaced every 48 hours until cells became confluence. HEK293 cells were 

used from passage 4 to passage 15. 

For transfection experiments, HEK 293 cells were counted using a haemocytometer 

following harvesting and seeded out in 96- well (seeding density: 0.0125 x 106 cell per well) 

solid white tissue culture adherent, flat well plates (Sarstedt, Leicester, UK) at 4 x 105 

cells/ml. 

2.2.1. Determination of LPS and drug concentration(s) used  

In other to determine the concentration of LPS used for the study, BV2 cells were stimulated 

with various concentrations of LPS (0.05 – 1 µg/ml) for 24 hours. Subsequently, a nitrite 

assay was done to determine the concentration used. Result obtained (Figure 12) showed 

that at 1µg/ml, nitrite production was highest and significant. Hence, this concentration was 

used for the study.  
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Figure 12: Effect of various concentrations of LPS (0.05-1 µg/ml) on nitrite production following 
24 hour stimulation. 

 

In other to determine the concentration of artemisinin, artemether and artesunate used in the 

study, an MTT assay was carried out for various concentrations. The results obtained for 

artemisinin (5-40 µM), artemether (5-40 µM) and artesunate (0.5-4 µM) are reported in 

sections 3.4, 4.4 and 5.4 respectively. These concentrations were found to be non-toxic to 

the cells and hence, they were further investigated. Results from the nitrite assay on 

artemisinin (section 3.1.1), artemether (section 4.1.1) and artesunate (section 5.1.1) also 

served as a preliminary result to suggest that the compounds might possess anti-

inflammatory actions. 

2.2.2. Drugs and treatment 

Artemisinin (Sigma-Aldrich, Dorset, UK), artemether (Sigma-Aldrich, Dorset, UK) and 

artesunate (Sigma-Aldrich, Dorset, UK) were dissolved in dimethyl sulphoxide (DMSO) 

(Sigma-Aldrich, Dorset, UK) to a concentration of 0.1 M. Aliquots were stored at -80°C and 

diluted in DMSO (Sigma-Aldrich, Dorset, UK) before use. BV2 cells were pre-treated with 

either artemisinin (5-40 µM), artemether (5-40 µM) or artesunate (0.5-4 µM) for 30 minutes 

and stimulated with Lipopolysaccharide (LPS) (1 µg/ml) (Salmonella enterica serotype 

typhimurium SL1181, Sigma-Aldrich, Dorset, UK). Control cells were not treated with 

compounds or stimulated with LPS. LPS treated BV2 cells were only stimulated with LPS. 

The treatment plan is shown in table 3. 

In experiments to test effects of compounds on HO-1 activation, BV2 cells were treated with 

only artemisinin (5-40 µM), artemether (5-40 µM) or artesunate (0.5-4 µM). In experiments to 

investigate Nrf2 activation, cells were treated with only artemisinin (40 µM), artemether 

(40 µM) or artesunate (4 µM). For HO-1 and Nrf2 experiments there were no LPS controls 

but there were untreated cells, which represent the negative control. 
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In NF-B luciferase activity experiments using HEK 293 cells, cells were pre-treated with 

artemisinin (5-40 µM), artemether (5-40 µM) or artesunate (0.5-4 µM) for 30 minutes and 

stimulated 1 ng/ml TNFα (eBiosciences, Hatfield, UK). The negative control group were 

treated with no compounds or TNFα. The TNFα control cells were stimulated with TNFα 

(1 ng/ml).  

For experiments on ARE luciferase activity experiments, HEK 293 cells were treated with 

only artemisinin (5-40 µM), artemether (5-40 µM) or artesunate (0.5-4 µM). The negative 

control cells represent the untreated cells. There was no TNFα control group in ARE 

luciferase activity experiments. 

2.3. Measurement of cell viability - MTT Assay 

The colorimetric 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay 

is a simple method of assessing the ability of live but not dead cells to reduce a water 

soluble tetrazolium-based compound (MTT) to a purple formazan water-insoluble product 

(Figure 13). This reduction is carried out in cells by mitochondrial reductase. The amount of 

purple formazan formed is an indicative of the viability of the cells. 

MTT assay was performed to determine the viability of BV2 microglia stimulated with or 

without LPS (1 μg/ml) in the presence of test compounds for 24 hours. MTT powder (Sigma-

Aldrich, Dorset, UK) was dissolved in double deionised water. Two hundred microliters of 

MTT solution (5 mg/ml) diluted in culture media was added to each well of BV2 microglia in a 

96-well plate. The plate was then incubated at 37°C in a CO2-incubator for 4 hours. 

Thereafter, 200 μl of medium was removed from every well without disturbing the cell 

clusters and 150 μl of DMSO solution added to each well to dissolve the formazan crystals. 

Shaking the plate for a few seconds before the absorbance was read at 540 nm with a plate 

reader (Tecan F50, Reading, UK) facilitated thorough mixing. Experiments were performed 

at least three times and in triplicates. 

Table 3: Treatment plan for study 
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Figure 13: The chemistry of MTT assay.  
Live but not dead cells reduce a water-soluble tetrazolium-based compound (MTT) to a purple 

formazan water-insoluble product (van Meerloo et al., 2011). 

 

2.4. Determination of nitrite production (Griess assay) 

Nitric oxide is a physiological messenger molecule in many biological systems. One of the 

methods of investigating nitric oxide is to measure nitrite (NO2
-), one of the two primary 

products of NO breakdown. Nitrite is stable and non-volatile and hence measured in the 

assay. The Griess reaction is based on the chemical reaction, which uses sulphanilamide 

and N-1-naphthylethylenediamine dihydrochloride (NED) under acidic (phosphoric acid) 

conditions (Figure 14). 

Accumulation of nitrite, an indicator of NO levels (and indirectly of inducible nitric oxide 

synthase (iNOS) activity) in culture supernatant was measured using the Griess reagent. In 

experiments to determine effects of compounds on nitrite production, cells were seeded out 

and stimulated in phenol red-free, serum-free RPMI media for 24 hours. Levels of nitrite in 

culture media were measured using commercially available Griess assay kit (Promega, 

Southampton, UK). 

Briefly, 50 μl of supernatants were incubated with 50 μl of sulphanilamide solution for 

10 minutes in the dark at room temperature. Thereafter, 50 μl of napthyethylene-diamine 

(NED) solution was added and incubated for a further 5-10 minutes at room temperature in 

the dark. Absorbance was measured within 30 minutes at 540 nm in a microplate reader 

(Infinite F50, Tecan, Reading, UK). Actual nitrite concentrations in the various treatments 

were obtained from the nitrite standard reference curve. Experiments were performed at 

least three times and in triplicates. 
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Figure 14: Principle of the Griess assay.  
Reaction of sulphanilamide with nitrite and N- (1-naphthyl) ethylenediamine (NED) to produce an azo 

product measured in Griess assay (Griess, 1879). 

 

2.5. Determination of prostaglandin E2 (PGE2) production using enzyme 

immunoassay (EIA) 

Prostaglandins are synthesised from arachidonic acid by COX-1 or COX-2. This is 

processed further to PGE2 or other prostanoids by cytosolic or microsomal prostaglandin 

synthases. PGE2 is produced by a wide variety of tissues and in several pathological 

conditions, including inflammation. In LPS-activated BV2 microglia cells, PGE2 is produced. 

Consequently, the effect of artemisinin (5-40 µM), artemether (5-40 µM) and artesunate (0.5-

4 µM) on PGE2 production was investigated. 

BV2 cells were treated with artemisinin (5-40 µM), artemether (5-40 µM) or artesunate (0.5-

4 µM) for 30 minutes and stimulated with LPS (1 µg/ml) for 24 hours. Thereafter, cells 

supernatants were collected. Levels of PGE2 in culture supernatants were measured using 

commercially available enzyme immunoassay kit (Arbor Assays, Ann Arbor, Michigan, USA). 

100 μl of samples were incubated in a clear plastic microtiter 96 well plate pre-coated with 

goat anti-mouse IgG together with 25 μl of PGE2 conjugate (a prostaglandin E2-peroxidase 

conjugate in stabilising solution) and 25 μl of mouse monoclonal antibody (specific for PGE2) 

for 2 hours at room temperature with shaking at 250 rpm. Then, wells were washed 4 times 

with a wash buffer. In the next step, 100 μl of 3,3’, 5,5’-Tetramethylbenzidine (TMB) solution 

was added into the wells of the clear plastic microtiter 96 well plate followed by a further 

incubation for 30 minutes at room temperature without shaking. At the end of the incubation 

period, the reaction was stopped using a 1 M solution of hydrochloric acid. Absorbance was 

measured at 450 nm in a microplate reader (Infinite F50, Tecan, Reading, UK) within 
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30 minutes of stopping the reaction. Actual PGE2 concentration was obtained from the PGE2 

standard reference curve, ranging from 31.25-1000 ρg/ml. Experiments were performed at 

least three times and in triplicates. 

2.6. ELISA for the determination of TNFα, and IL-6 

Pro-inflammatory cytokines have been shown to play an important role in the progression of 

neuroinflammation. Therefore, the effect of artemisinin (5-40 µM), artemether (5-40 µM) or 

artesunate (0.5-4 µM) was investigated in LPS activated BV2 microglia. 

BV2 cells were seeded in 6 well plates (2 × 105 cells/ml) and cultured for 48 hour. Thereafter, 

cells were treated with artemisinin (5-40 µM), artemether (5-40 µM) or artesunate (0.5-4 µM) 

for 30 minutes and stimulated with LPS (1 µg/ml) for 24 hours. Supernatants were collected, 

centrifuged at 1200 rpm for 5 minutes and stored away in -80°C until when required for 

experiments. Determinations of TNFα and IL-6 concentration were measured using a 

commercially available mouse ELISA kits (R&D systems, Abingdon, UK). 

Prior to use for experiments, samples were allowed to thaw completely and come to room 

temperature. Microplates coated with antibody specific for TNFα or IL-6 was washed four 

times with 1x wash buffer. Next wells were blocked using assay diluent at room temperature 

for 1 hour. Subsequently, wells were washed four times using 1x wash buffer. Diluted 

samples and standards were added to the wells and incubated for 2 hours at room 

temperature with shaking at 250 rpm. Following incubation, wells were washed four times 

and 100 µl detection antibody added in each well and incubated for a further 1 hour with 

shaking at 250 rpm at room temperature. Next, 100 µl of avidin-hrp solution was added in 

each well and incubated for 30 minutes following washing. At the end of the incubation 

period, wells were washed five times, 3, 3’, 5, 5’-Tetramethylbenzidine (TMB) substrate 

solution (R & D systems, Abingdon, UK) was added to each well and incubated in the dark 

for 30 minutes. Finally, 100 µl stop solution (2 N sulphuric acid, R&D systems, Abingdon, 

UK) was added to each well and absorbance read at 450 nm using a microplate reader 

(Infinite F50, Tecan, Reading, UK). Concentrations of TNFα or IL-6 production were read off 

a TNFα or IL-6 standard curve. Experiments were performed at least three times and in 

triplicates. 

2.7. Preparation of whole cell extracts 

Whole cell (cytoplasmic) extraction was performed on cells lysed in a 

radioimmunoprecipitation assay (RIPA) buffer containing 2 mM phenylmethylsulfonyl fluoride 

(PMSF) (Sigma-Aldrich, Dorset, UK). 
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At the end of cell stimulation, suspended BV2 cells were collected, centrifuged, and washed 

in 1x PBS while adherent cells were washed with 1x PBS (Sigma-Aldrich, Dorset, UK). RIPA 

lysis buffer containing 2mM PMSF was added to adherent and suspended cells and left on 

ice for 10 minutes to allow swelling. Subsequently suspended cells were vortex-mixed 

vigorously while adherent cells were scrapped and collected into the eppendorf tubes 

containing lysed suspended cells. Lysates were centrifuged at 13000 rpm for 10 minutes and 

whole cell extracts (supernatants) collected and stored away at -80°C until when required. 

2.8. Preparation of nuclear cell extracts 

Nuclear extraction was carried out using a fractionation procedure. First the whole cell 

extract was collected followed by further extraction for the nuclear extract using Epi 

Extraction kit (Abcam, Cambridge, UK). At the end of the experiment, cells were washed 

with 1x PBS and re-suspended in whole cell extraction buffer (ENE1 [1x]) containing DTT 

and protease inhibitor. Cells were left on ice for 10 minutes to allow swelling. Thereafter, 

they were vortex-mixed vigorously and centrifuged at 13000 rpm for 1 minute at 4°C. The 

supernatant (whole cell extract) was collected in a fresh ice-cold eppendorf tubes and frozen 

away in -80°C. The pellet left in the tube was re-suspended in nuclear extraction buffer 

(ENE2) containing DTT and protease inhibitor and left on ice for 15 minutes with vigorous 

vortex mixing every 3 minutes at 2000 rpm. Thereafter, samples were vortex mixed again 

before centrifugation at 4°C for 10 minutes at 13500 rpm. At the end of the centrifugation, 

the nuclear extract was collected and stored away at -80°C.  

2.9. Protein determination 

Whole cell extracts and nuclear extracts were diluted 1:15 and 1:20 respectively in deionised 

water. Next, 5 µl of diluted protein samples and pre-diluted BSA standards (Thermoscientific, 

Loughborough, UK) were added to a 96 well plate in duplicates. 250 µl of Coomasie reagent 

(Thermoscientific, Loughborough, UK) was added to each well and mixed for 30 seconds 

with a plate shaker. Samples were subsequently incubated at room temperature for 

5 minutes. Absorbance was read using a plate reader (Infinite, Tecan, Reading UK) at 

595 nm. The protein concentration in each sample was measured from the standard curve, 

ranging from 125-2000 µg/ml. 

2.10. Western blot 

Western blot is used to separate and identify proteins. A mixture of proteins is separated 

based on their molecular weights using gel electrophoresis. Separated proteins are 

transferred to a membrane producing a band for each protein. The membrane is incubated 
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with label antibodies specific to the protein of interest. This procedure has been used to 

identify the effect of artemisinin, artemether and artesunate on protein expression. 

Protein samples were prepared by adding 4× LDS buffer (Life Technologies, Paisley, UK) 

and 10× sample reducing agent (Life Technologies, Paisley, UK) at a volume that results in 

1×final dilution in the sample. The mixture was then heated at 70°C for 10 minutes. Samples 

were vortex mixed before and after heating. Next, samples were centrifuged briefly and 

loaded into the wells of a polyacrylamide gel (4-12 % Bis-Tris gel, Life Technologies, 

Paisley, UK). Subsequently after loading the wells, antioxidant (Life Technologies, Paisley, 

UK) was added in the 1x SDS MES running buffer (Life Technologies, Paisley, UK). 

Protein samples were separated by SDS-PAGE for 35 minutes at 200 V, blotted onto 

polyvinylidene difluoride (pvdf) membrane (Millipore, Hertfordshire, UK) for 2 hours at 25 V. 

Thereafter, membrane was incubated in readymade blocking buffer (Licor, Cambridge, UK) 

or 5 % non-fat milk in 1x tris-buffered saline and tween 20 (TBST) for 1 hour at room 

temperature. Thereafter, membrane was washed three times using 1x TBS-T at 2000 rpm 

for 10 minutes/ wash. 

After washing, membrane was incubated with the required primary antibody at 4°C with 

shaking overnight. Table 4 above shows the list of antibodies used for the experiments and 

the dilution factor used. 

After overnight incubation, membranes were washed extensively (three times for 10 minutes 

each using 1x TBS-T) and incubated in secondary antibody Alexa Fluor 680 goat anti-rabbit 

(1:10000) (Invitrogen, Paisley, UK) at room temperature for 1 hour in the dark. 

Subsequently, membrane was washed three times for 5 minutes each using 1x TBST. 

Protein detection was done using a LICOR Odyssey Imager. Each experiment was 

performed in triplicate.  
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Table 4: List of the antibodies used in western blot analysis with the details of the source and dilution 
factor 

 

2.10.1. Stripping and re-probing 

The PVDF membranes were stored in an incubation box containing TBS-T (1x) buffer at 

4°C, until re-probing was required. Antibodies were stripped from the PVDF membrane by 

incubating it in restore fluorescent stripping buffer (1x, Thermo Fisher Scientific, Hempstead, 

UK) for 5 minutes at room temperature with shaking (20 rpm). Stripping buffer was then 

discarded and membrane washed three times for 10°minutes each with TBS-T to get rid of 
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stripping buffer. Subsequently, membranes were blocked with blocking buffer, washed and 

re-exposed to primary antibody. 

2.11. Transient transfection and NF-B reporter gene assay 

Cell transfection is a procedure that involves introducing foreign nucleic acids into cells to 

produce genetically modified cells (Kim & Eberwine, 2010). This is an important analytical 

procedure as it can be used to investigate gene function and regulation, and protein 

function. Reporter assays are versatile and sensitive methods of assaying targets in high 

throughput drug screening (Liu et al., 2009). Promoters are used to drive reporter gene 

expression and can be activated by a broad range of selective activation. HEK-293 cells 

have been transfected with NF-B construct and the reporter gene assay has been used to 

investigate the effect of artemisinin, artemether and artesunate on NF-B activity. 

HEK 293 cells were grown in MEM media supplemented with foetal bovine serum (FBS), 

P/S, L-glutamine and sodium pyruvate. At confluence, the cells were sub-cultured (at a ratio 

of 1:3) 24 hours before transfection. Thereafter, cells were harvested and re-suspended at 4 

x 105 cells/ml in Opti-MEM containing 5 % FBS and 1 % NEAA. Cells were seeded out in a 

solid, white 96-well plates and incubated with 50 μl Cignal® NF-B reporter (0.5μg) (SA 

Biosciences, Manchester, UK), using TransIT®-LT1 transfection reagent (diluted 1:3 in Opti-

MEM serum free media) (Mirus, Cambridge, UK) and incubated for a further 16 hours at 

37°C in 5 % CO2 incubator.  

Following HEK 293 cell transfection with NF-B vector, media was changed to OPTI-MEM 

(0.5 % FBS, 1 % NEAA, 100 U/ml Penicillin and 100μg/ml Streptomycin) and incubated for 

another 8 hours. Thereafter, transfected cells were treated with artemisinin (5-40 µM), 

artemether (5-40 µM) or artesunate (0.5-4 µM) and incubated for 30 minutes at 37°C 

followed by TNFα (1 ng/ml) for 6 hours. At the end of the stimulation, NF-B-mediated gene 

expression was measured by using One-Glo luciferase Assay kit (Promega, Southampton, 

UK). 100 µl of luciferase buffer containing luciferase substrate was added to each well at the 

end of the 6 hours incubation and luminescence read with FLUOstar OPTIMA reader (BMG 

LABTECH, Bucks, UK). Experiments were performed at least three times and in triplicates. 

2.12. Transient transfection and ARE reporter gene assay 

Nrf2 responds to oxidative stress by binding to ARE in the promoter of genes coding for 

antioxidant enzymes like NADPH and HO-1. To understand the effect of artemisinin, 

artemether and artesunate on ARE, cell transfection was used to introduce ARE construct to 

HEK 293 cells. Subsequently, the effect of artemisinin, artemether and artesunate on ARE 

activity was measured in a reporter gene assay.  
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HEK 293 cells were grown in MEM supplemented with foetal bovine serum (FBS), 

penicillin/streptomycin, and L-glutamine and sodium pyruvate. At confluence, cells were 

harvested and re-suspended at 1.5 x 105 cells/ml in OPTI-MEM (Life Technologies, Paisley, 

UK) supplemented with 10 % FBS and sodium pyruvate. Subsequently, cells were seeded 

out and incubated in solid white 96-well at 37°C for 24 hours. Transfection cocktail was 

made by diluting ARE vector (pGL4.37 [luc2P/ARE/Hygro]; Promega, Southampton, UK) at a 

concentration of 1 ng DNA/µl in transfection reagent (FUGENE 6) (Promega, Southampton, 

UK) diluted at a ratio of 3:1 in OPTI-MEM. Transfection cocktail was incubated at room 

temperature for 20 minutes. Transfection cocktail (8 µl) was added in each well and 

incubated for 18 hours at 37°C.  

Following transfection of HEK 293 cells with ARE vector, culture media was changed to 

75 µl of OPTI-MEM (supplemented with 0.5 % FBS) per well and incubated for 6 hours at 

37°C. Subsequently, cells were treated with artemisinin (5-40 µM), artemether (5-40 µM) or 

artesunate (0.5-4 µM) and incubated at 37°C for 18 hours. Following incubation, plates were 

allowed to cool at room temperature for 15 minutes. Thereafter, 80 µl of luciferase buffer 

containing luminescence substrate was added to each well and luminescence read with 

FLUOstar OPTIM reader (BMG LABTECH, Bucks, UK). Experiments were performed at 

least three times in triplicates. 

2.13. Electrophoretic mobility shift assay (EMSA) 

EMSA is a simple, rapid and sensitive means of detecting sequence-specific DNA-binding of 

proteins. Hence it is used to study protein: DNA complexes and interaction. EMSA was used 

to investigate the effect of artemisinin; artemether and artesunate on the ability of NF-B to 

bind in a sequence-specific manner to a labelled oligonucleotide probe and retard its 

migration through a non-denaturing polyacrylamide gel. 

IRDye 700-labeled double-stranded DNA oligonucleotide (Licor, Cambridge, UK) was used 

for the experiments. DNA oligonucleotides were incubated with nuclear extract samples and 

binding buffer for 30 minutes at room temperature in the dark in a reaction cocktail 

containing 25 mM DTT/2.5 % Tween 20, 1 µg/µl poly (di.dc), 1 % NP-40 and 100 mM MgCl2.  

Thereafter, native tris-borate-EDTA (TBE) gel (Life technologies, Paisley, UK) was pre-run 

for 30 minutes. Subsequently, separation of protein-DNA complexes was performed at 

10 V/cm at 4C for 1 hour in the dark. At the end of the electrophoresis, migration was 

visualised using LICOR Odyssey Imager (Cambridge, UK). 
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2.14. Silencing experiments 

Eukaryotic cells have many sophisticated ways of controlling gene expression. In the 

complex environment of the cell, these processes need to be precisely targeted. A group of 

mechanisms that use small RNA molecules to direct gene silencing is known as RNA 

interference (RNAi). RNAi is achieved with the use of small interfering RNA (siRNA), micro 

RNA or small hairpin RNA (shRNA). 

It has been shown that the induction of Nrf2 by compounds of different chemical classes is 

directly correlated to the inhibition of pro-inflammatory responses (Lui et al, 2008; Baird & 

Dinkova-kostoova, 2011). Hence, to understand if the inhibitory effect of artemisinin, 

artemether and artesunate on NO, TNFα, IL-6 and PGE2 is dependent on Nrf2, Nrf2 gene 

was knocked out in BV2 cells. Subsequently, the cells were stimulated with LPS following 

pre-treatment with artemisinin, artemether or artesunate. The effects of these compounds on 

NO, TNFα, IL-6 and PGE2 were investigated in wild-type cells and compared to that of siNrf2 

cells. 

Small interfering RNA (siRNA) targeted at Nrf2 (Santa Cruz biotechnology, Texas, USA) was 

used to knockdown Nrf2. BV2 cells were seeded in six-well culture plate, and incubated at 

37°C in a 5 % CO2 incubator until 70-80 % confluent. Then, 2 µl Nrf2 siRNA duplex were 

diluted into 100 µl of siRNA transfection medium (Santa Cruz biotechnology, Texas, USA). 

In a separate tube, 2 µl of transfection reagent (Santa Cruz biotechnology, Texas, USA) was 

diluted into 100 µl of siRNA transfection medium. The dilutions were mixed gently together 

and incubated for 30 minutes at room temperature.  

Next, cells were incubated in Nrf2 siRNA transfection cocktail for 6 hours at 37°C. Following 

6 hours transfection, media change was done on all cells (wild-type and siNrf2) to complete 

supplemented media and incubated for a further 18 hours. Thereafter, cells were pre-treated 

with artemisinin (40 µM), artemether (40 µM) or artesunate (4 µM) for 30 minutes and 

stimulated with LPS (1 µg/ml) for 24 hours. Cell supernatants were collected and stored in -

80°C until analysis. 

For result analysis, samples from Nrf2 silenced cells were denoted as ‘+siNrf2’ while 

samples from wild-type cells were denoted as ‘-siNrf2’. 

2.15. Statistical analyses 

Values of all experiments are represented as a mean ± SEM of at least 3 experiments. For 

each experiment, percentage relative to untreated control, LPS control or TNFα control have 

been done before exporting values obtained to GraphPad. Statistical analysis was 
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performed using One-way ANOVA followed by a post-hoc Student Newman-Keuls test, 

using the GraphPad Prism statistics software. 
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CHAPTER 3 

STUDIES ON ARTEMISININ 
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3. Studies of Artemisinin 

3.1. Background 

Artemisinin has been shown to have promising anti-inflammatory property in various 

experimental conditions. Previous studies have shown that artemisinin interrupts NF-B 

signalling pathway in vivo (Pahl, 1999). It has also been demonstrated that artemisinin is 

capable of inhibiting neuroinflammation in a model of AD in APPswe/PS1dE9 double 

transgenic mice (Shi et al., 2013). However, the effects of artemisinin in LPS-activated BV2 

microglia are not fully understood. To explore these effects, BV2 microglia cells were pre-

treated with artemisinin and challenged with LPS. Subsequently, effects of artemisinin on 

secreted pro-inflammatory proteins (TNFα, IL-6, PGE2 and NO) were investigated. In order 

to establish the molecular mechanisms of action of the compound, possible interference with 

NF-B and p38 MAPK signalling were also investigated.  

3.1.1. Artemisinin inhibits iNOS-mediated nitrite production from LPS-activated BV2 

microglia 

One of the prominent features of chronic neuroinflammation is the excessive production of 

nitric oxide. To assess whether artemisinin could inhibit iNOS-mediated NO production, BV2 

cells were stimulated with LPS (1 µg/ml) in the absence or presence of artemisinin (5-40 µM) 

for 24 hours. Subsequently, cell supernatants and whole cell extracts were collected. Griess 

assay was used to assess the effect of artemisinin on NO production in supernatants while 

immunoblotting was used to investigate the effect of artemisinin on iNOS protein expression. 

As shown in Figure 15 a, treatment with LPS (1 µg/ml) resulted in a marked increase in NO 

production in BV2 cells when compared to the untreated control (p<0.001). However, pre-

treatment with artemisinin produced a concentration-dependent suppression of nitrite 

produced by the cells (p< 0.001). 

To further investigate the results obtained in experiments on NO production, the effect of 

artemisinin (5-40 µM) on iNOS protein expression was investigated using western blot. 

Results show that LPS treatment caused a marked increase (p<0.001) in iNOS protein 

expression when compared to untreated control cells (Figure 15 b). 

However, pre-treatment with artemisinin (20 and 40 µM) significantly inhibited expression of 

iNOS protein expression in LPS-activated BV2 cells. At concentrations of 20 µM and 40 µM, 

pre-treatment with artemisinin resulted in 65 % and 50 % iNOS protein expression 

respectively, when compared with LPS-treated cells. These observations suggest that higher 

concentrations of artemisinin reduced NO production in LPS activated BV2 cells through 

inhibition of iNOS protein expression. 
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Figure 15: Artemisinin suppressed iNOS-mediated nitrite production in LPS-activated BV2 microglial 
cells. 

(A) Artemisinin (5-40 µM) inhibited nitrite production in LPS activated BV2 microglia cells. (B) 
Artemisinin (20 and 40 µM) inhibited iNOS protein expression in LPS-activated BV2 microglia cells. All 

values are expressed as mean ± SEM for at least 3 independent experiments. Data were analysed 
using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, 
***p<0.001 in comparison with LPS control. θp<0.05, θθθp< 0.01 in comparison with negative control 

(untreated cells). 

 

3.1.2. Artemisinin suppresses PGE2 production in LPS stimulated BV2 microglia by 

inhibiting COX-2 and mPGES-1 proteins. 

To assess whether artemisinin inhibits the production of PGE2, BV2 cells were stimulated 

with LPS (1 µg/ml) in the presence or absence of artemisinin (5-40 µM) for 24 hours. BV2 

cells treated with LPS (1 µg/ml) showed a marked increase in PGE2 production (Figure 

16 a).  
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Figure 16: Artemisinin suppressed COX-2- and mPGES-1-mediated PGE2 production in LPS-
activated BV2 microglial cells.  

(A) Artemisinin (5-40 µM) inhibited PGE2 production in LPS activated BV2 microglia cells. (B) 
Artemisinin (20 and 40 µM) suppressed COX-2 protein expression in LPS-activated BV2 microglial 

cells. (C) Artemisinin (5-40 µM) suppressed mPGES-1 protein in LPS- activated BV2 activated 
microglial cells. All values are expressed as mean ± SEM for at least 3 independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-
Keuls test. *p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp< 0.001 in comparison 

with negative control (untreated cells). 
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Pre-treatment with artemisinin (5-40 µM) significantly (p<0.05) suppressed PGE2 production 

in LPS-activated BV2 microglia cells at all concentrations investigated. At 20 and 40 µM of 

the compound, PGE2 production was 55.7 % and 47.6 %, respectively when compared to 

the LPS control (p<0.001). 

Thereafter, the effect of artemisinin on COX-2 protein expression was investigated. Figure 

16 b shows that BV2 microglia cells stimulated with LPS produced a significant expression of 

COX-2 protein expression when compared to the untreated control (p<0.001). However, pre-

treatment with artemisinin (20-40 µM) resulted in a significant (p<0.05) reduction in COX-2 

protein expression. At 20 µM, pre-treatment with artemisinin resulted in 79.7 % COX-2 

protein compared to LPS control. At 40 µM, COX-2 protein expression was 64.4 % when 

compared to the LPS control. These findings suggest that at 20 and 40 µM concentrations, 

inhibition of PGE2 production in LPS activated BV2 microglia cells by artemisinin were 

mediated through inhibition of COX-2 protein expression. 

mPGES-1 is an inducible terminal enzyme for PGE2 biosynthesis (Kudo & Murakami, 2005). 

It is also coupled to COX-2 has been reported to be involved in neuroinflammation (de 

Oliveira et al., 2008). Consequently, the effect of artemisinin on mPGES-1 protein 

expression was also studied. Treatment of BV2 microglia cells with LPS (1 µg/ml) resulted in 

a marked increase in mPGES-1 protein expression (Figure 16c).  

However, it was observed that pre-treatment with artemisinin (5-40 µM) significantly reduced 

mPGES-1 protein expression (Figure 16 c). These results appear to suggest that the effect 

of artemisinin on PGE2 production was mediated through inhibition of mPGES-1 protein at 

much lower concentrations than its inhibition on COX-2. 

3.1.3. Artemisinin suppresses TNFα and IL-6 production in LPS activated BV2 

microglia cells. 

Pro-inflammatory cytokines (TNFα and IL-6) have been reported to play a vital role in 

chronic neuroinflammation (Brunssen et al., 2013; Olmos & Llado, 2014). Therefore the 

effect of artemisinin on these cytokines was investigated in LPS-activated BV2 microglia 

cells. BV2 cells were stimulated with LPS (1 µg/ml) in the absence or presence of 

artemisinin (5-40 µM) for 24 hours. Subsequently, supernatants were collected. 

Result showed that LPS (1 µg/ml) stimulation resulted in a significant increase in TNFα 

(Figure 17 a). However, in samples collected from cells pre-treated with artemisinin (10-

40 µM) a concentration-dependent and significant (p<0.05) inhibitory effect of TNFα 

production was observed. 
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Figure 17: Artemisinin suppressed production of pro-inflammatory cytokines TNFα and IL-6 in LPS 
activated BV2 microglial cells.  

(A) Artemisinin (10-40 µM) suppressed TNFα production in LPS activated BV2 microglia cells. (B) 
Artemisinin (5-40 µM) inhibited IL-6 production in LPS activated BV2 microglia cells. All values are 
expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 
in comparison with LPS control. θp<0.05, θθθp< 0.001 in comparison with negative control (untreated 

cells). 

 

The effect of artemisinin on IL-6 production was also investigated. Figure 17 b shows that 

artemisinin (5-40 µM) significantly inhibited the production of IL-6 in a concentration-

dependent manner. At 20 µM and 40 µM of artemisinin, 37 % and 25 % IL-6 was produced 

respectively, when compared with LPS control.  

3.1.4. Artemisinin inhibits neuroinflammation in LPS-activated BV2 microglia by 

targeting IB/NF-B signalling. 

NF-B plays an important central role in the regulation of pro-inflammatory genes like iNOS 

which controls nitrite production, and COX-2 which mediates PGE2 production in stimulated 

microglia. Consequently, its effect on NF-B signalling was investigated. To understand 

whether artemisinin shows a general effect on NF-B mediated gene transcription, a 
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luciferase reporter gene assay was conducted. HEK 293 cells were transiently transfected 

with an NF-B reporter construct, and then stimulated with TNFα (1 ng/ml) in the absence or 

presence of artemisinin (5-40 µM). The experiment revealed that artemisinin (10-40 µM) 

produced significant (p<0.01) inhibition of NF-B-regulated luciferase reporter gene 

expression in a dose-dependent manner following stimulation with TNFα (1 ng/ml) (Figure 

18). 

NF-B exists in an inactive form in the cytoplasm where it is bound to IB complex. Upon 

phosphorylation by IKK, active NF-B (p65) translocate to the nucleus while IB gets 

degraded. Next, the effect of artemisinin on phosphorylation and degradation of IB-α was 

investigated. BV2 microglia cells were stimulated with LPS (1 µg/ml) for 1 hour in the 

presence or absence of artemisinin (5-40 µM). Whole cell extracts were obtained and 

analysed for phospho-IBα and total IB-α proteins.  
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Figure 18: Artemisinin (5-40 µM) suppressed NF-B activity in TNFα stimulated HEK293 cells 

transiently transfected with NF-B luciferase plasmid. 
HEK293 cells were stimulated with TNFα (1 ng/ml) in the absence or presence of artemisinin (5-

40 µM) for 6 hours. Luminescence measurement was used as a measure of NF-B activity. All values 
are expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using 

one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, 
***p<0.001 in comparison with TNFα control.  θp<0.05, θθθp< 0.001 in comparison with negative 

control (untreated cells). 

 

Figure 19 a shows that upon stimulation of BV2 microglia cells with LPS, there was a 

marked increase (p<0.001) in phospho-IB-α protein. However, pre-treatment with 

artemisinin (5-40 µM) decreased phospho-IB-α protein expression significantly (p<0.05). 

Treatment with LPS alone resulted in an increase in IBα degradation. However, 

pre-treatment of BV2 cells with artemisinin (20-40 µM) inhibited degradation of IBα by 

increasing total IBα protein expression (Figure 19 a). 
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Figure 19: Artemisinin inhibited NF-B signalling pathway in LPS-activated BV2 microglia cells. 

(A) Artemisinin inhibits IB-α phosphorylation and degradation in LPS-activated BV2 microglia cells. 

Whole cell lysates from 1 hour stimulation were analysed for p-IB-α and total IB-α protein 
expressions using western blot. (B) Artemisinin inhibited p65 nuclear translocation in LPS-activated 

BV2 microglial cells. Nuclear extracts from 1 hour stimulation were analysed for p65 protein 

expression using western blotting. (C). Artemisinin inhibited NF-B DNA binding in LPS-activated BV2 

microglia cells. Nuclear extracts from 1 hour stimulation were investigated for NF-B binding using 
EMSA. All values are expressed as mean ± SEM for at least 3 independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 
*p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp< 0.001 in comparison with negative 

control (untreated cells). 
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In the nucleus, p65 induces the transcription of various genes regulated by NF-B. 

Transcription of these genes result in the production of pro-inflammatory mediators including 

PGE2/COX-2 and NO/iNOS, as well as pro-inflammatory cytokines. The effect of artemisinin 

(5-40 µM) on nuclear phosphorylated p65 subunit was therefore investigated. At 

concentrations of 20 µM and 40 µM, artemisinin significantly (p<0.001) inhibited 

phosphorylated p65 protein expression in LPS activated BV2 microglia cells (Figure 19 b).  

When NF-B translocate to the nucleus, it binds to the NF-B promoter region where it 

activates the transcription of pro-inflammatory genes. The effect of artemisinin on NF-B 

binding to DNA was investigated using EMSA. Results obtained (Figure 19 c) show that 

artemisinin inhibited DNA binding of NF-B. This result suggests that not only does 

artemisinin inhibit NF-B translocation to the nucleus but it also inhibits DNA binding.  

In NF-B signalling, activation of NF-B occurs due to IB kinase (IKK)-mediated 

phosphorylation and proteasomal degradation of IB. This process allows active NF-B 

subunits to translocate to the nucleus and induce target gene expression. To further 

elucidate the molecular mechanisms involved in the anti-neuroinflammatory activity of 

artemisinin, its effect on phospho-IKK protein was investigated. Results showed that 

artemisinin did not have significant inhibitory effect on phospho-IKK protein expression in 

LPS-activated BV2 cells (Figure 20).  

 

Figure 20: Artemisinin does not inhibit IKK activity in LPS-activated BV2 microglial cells. 
BV2 cells were stimulated with LPS (1 µg/ml) in the presence or absence of artemisinin (5-40 µM) for 

10 minutes. Whole cell extracts were analysed for phospho-IKK and total IKK protein expression 
using western blot. All values are expressed as mean ± SEM for at least 3 independent experiments. 
Data were analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-

Keuls test. *p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp< 0.001 in comparison 
with negative control (untreated cells). 
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It therefore appears artemisinin interferes with NF-B signalling by directly targeting IB 

phosphorylation and degradation. 

3.1.5. Artemisinin interferes with p38MAPK signalling pathway through inhibition of 

MKK3/6 

The p38MAPK signalling pathway has been reported to play a crucial role in the expression 

and activity of pro-inflammatory cytokines by contributing to their transcriptional and post-

transcriptional regulation (Bhat et al., 1998). In addition, in primary rat and human microglia, 

LPS stimulated p38MAPK signalling has been reported to mediate the production of pro-

inflammatory mediators including NO and TNFα (Lee et al., 2000; Munoz & Ammit, 2010). 

Based on these evidences that strongly implicate p38MAPK in neuroinflammation, the effect 

of artemisinin on its signalling was investigated. 

First, the effect of the compound on the phosphorylation of p38-MAPK was investigated. 

BV2 microglia cells were pre-treated with artemisinin (5-40 µM) for 30 minutes followed by 

stimulation with LPS (1 µg/ml) for 1 hour. Subsequently, whole cell extracts were collected 

and the effect of artemisinin (5-40 µM) on the phosphorylation of p38 was investigated. 

Figure 21 shows that on LPS stimulation, a significant increase in the phosphorylation of p38 

protein was observed.  

 

Figure 21: Artemisinin inhibited phosphorylation of p38 in LPS-activated BV2 microglial cells.  
Whole cell extracts from 1 hour stimulation were analysed for p-p38 and total p38 protein using 

western blot. All values are expressed as mean ± SEM for at least 3 independent experiments. Data 
were analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls 

test. *p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp<0.001 in comparison with 
Negative control (untreated cells). 

 

However, pre-treatment with artemisinin (10-40 µM) resulted in a concentration-dependent 

decrease in phospho-p38 protein expression. At 20 µM and 40 µM artemisinin p-p38 protein 
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expression was 63 % (p<0.001) and 48 % (p<0.001) respectively when compared to the LPS 

control. 

LPS stimulation of the microglia is known to phosphorylate p38MAPK by MKK3/6. Therefore, 

to further understand the effect of artemisinin on p38MAPK signalling, the effect of the 

compound on phospho-MKK3/6 was investigated. BV2 microglia cells were pre-treated with 

artemisinin and subsequently stimulated with LPS (1 µg/ml) for 1 hour. Phosphorylated 

MKK3/6 in BV2 microglia cells stimulated with LPS was significantly increased when 

compared to the control (Figure 22 a).  

However, pre-treatment with artemisinin (10 and 20 µM) resulted in a decrease in 

phosphorylated MKK3/6 protein expression. Once activated, p38MAPK further activates 

transcription factors by acting on its substrate MAPKAPK2 (Bachstetter & Eldik, 2010). In 

addition, MAPKAPK2 has been linked to microglial cell activation (Culbert et al., 2006). 

Stimulation of BV2 microglia with LPS caused a marked rise in phospho-MAPKAPK2 

expression (Figure 22 b). Pre-treatment with artemisinin (20 and 40 µM) resulted in a 

decrease in phopho-MAPKAPK2 protein. These results show that artemisinin the effects of 

artemisinin on p38MAPK signalling was more evident at 10 and 40 µM.  
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Figure 22: Artemisinin inhibited phosphorylation of MKK3/6 and MAPKAPK2 in LPS activated BV2 
microglial cells.  

(A.) Artemisinin (20-40 µM) inhibited MKK3/6 phosphorylation in LPS activated BV2 microglia cells. 
(B.) Artemisinin (20-40 µM) inhibited phosphorylation of MAPKAPK2 in LPS activated BV2 microglia 
cells. All values are expressed as mean ± SEM for at least 3 independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 
*p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp< 0.001 in comparison with negative 

control (untreated cells). 

 

3.2. Artemisinin activates the Nrf2/HO-1 antioxidant protective system. 

Nrf2 is a transcription factor that is widely expressed in human and mouse tissues (Hayes & 

Dinkova-Kostova, 2014). Nrf2 activates a battery of antioxidant and cytoprotective genes 

that have in common a cis-acting enhancer sequence termed antioxidant response element 

(ARE) that include heme oxygenase-1 (HO-1) (Innamorato et al., 2008). Nrf2/HO-1 axis has 

been reported to be relevant in down-regulation of neuroinflammation by restoring 
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homeostasis (Innamorato et al., 2008; Rojo et al, 2014). Therefore, the effect of artemisinin 

on Nrf2/HO-1 antioxidant protective system was investigated. 

To elucidate the effect of artemisinin on HO-1, BV2 cells were treated with artemisinin (5-

40 μM) for 24 hours, and HO-1 protein expression investigated. Results showed that 

artemisinin (5-40 μM) significantly (p<0.05) increased the expression of HO-1 (Figure 23). At 

40 µM, artemisinin produced 3-fold increase in HO-1 expression, suggesting marked 

activation of the protein. 

 

Figure 23: Artemisinin activated HO-1 protein in BV2 microglial cells.  
BV2 cells were treated with artemisinin (5-40 µM) for 24 hours. Whole cell extracts were collected and 

analysed for HO-1 protein expression using western blot. All values are expressed as mean ± SEM 
for at least 3 independent experiments. Data were analysed using one-way ANOVA for multiple 
comparisons with post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 in comparison with 

control. 

 

To further understand the effect of artemisinin on Nrf2-ARE protective mechanisms, the 

effect of artemisinin on ARE activity was investigated. HEK293 cells were transfected with 

ARE luciferase reporter gene. Treatment with artemisinin (5-40 µM) resulted in a 

concentration-dependent increase in ARE luciferase activity (Figure 24). At 20 µM and 

40 µM, artemisinin treatment resulted in 510 % and 638 % ARE luciferase activity 

respectively relative to control. Up regulation of Nrf2 transcription factor has been reported to 

enhance HO-1 activity (Innamorato et al., 2008). To further understand the mechanism 

involved in the pharmacological up regulation of HO-1 protein by artemisinin, its effect on 

Nrf2 was investigated. 
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Figure 24: Artemisinin activated ARE luciferase activity in HEK293 cells transfected with ARE 
construct.  

HEK293 cells were transfected with ARE-reporter construct for 18 hours. Thereafter, cells were 
treated with artemisinin (5-40 μM) for 8 hours and luciferase activity measured. All values are 

expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using one-
way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 

in comparison with control. 

In the experiment, the highest concentration of artemisinin (40 µM) was investigated 

because at this concentration, the percentage HO-1 produced was significant (p<0.001) 

compared with the untreated control. In addition, at this concentration, ARE luciferase 

activity was significant (p<0.001) compared to the control. BV2 cells were treated with 

artemisinin (40 µM) for 15, 30, 60, 120 and 180 minutes. Interestingly, artemisinin produced 

significant (p<0.001) activation of nuclear Nrf2 after 15 and 120 minutes of treatment (Figure 

25). 

 

Figure 25: Artemisinin (40 µM) activated Nrf2 protein in BV2 microglial cells.  
BV2 microglia cells were treated with artemisinin (40 µM) for 0 - 180 minutes. Thereafter, nuclear 
extracts were collected and analysed for Nrf2 protein expression using western blot. All values are 
expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 
in comparison with control. 
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3.3.1. Inhibition of nitric oxide production by artemisinin is independent of Nrf2 

Nrf2-knockout BV2 cells were pre-treated with artemisinin (40 µM) prior to LPS stimulation 

for 24 hours, followed by determination of nitrite. Results show that Nrf2 gene silencing 

enhanced nitrite production with LPS stimulation (Figure 26). However, pre-treatment with 

artemisinin did not reverse the inhibitory effect of artemisinin on nitrite production in Nrf2 

knockout cells. This observation suggests that the effect of artemisinin on nitrite production 

in LPS-activated BV2 microglia cells was independent of Nrf2 activity. 
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Figure 26: Inhibition of NO production in BV2 microglia by artemisinin is independent of Nrf2 activity. 
BV2 microglia cells were transiently transfected with Nrf2 siRNA, treated with artemisinin (40 µM) for 

30 minutes and stimulated with LPS (1 μg/ml) for 24 hours. Cell supernatants were collected and 
analysed for NO production using Griess Assay. All values are expressed as mean ± SEM for at least 

3 independent experiments. Data were analysed using one-way ANOVA for multiple comparisons 
with post-hoc Student Newman-Keuls test. θp<0.05, θθθp< 0.001 in comparison with - Nrf2 siRNA LPS 

control. 

 

3.3.2. Inhibition of TNFα and IL-6 production in LPS-stimulated BV2 cells by 

artemisinin is dependent on Nrf2 

Next, the effect of artemisinin (40 µM) on TNFα production in Nrf2 silenced cells was 

investigated. Figure 27 a shows that Nrf2 silencing enhanced TNFα production following 

LPS stimulation. However, pre-treatment with artemisinin (40 µM) reversed the inhibitory 

action of artemisinin following LPS stimulation (p<0.001). The outcome of this experiment 

suggests that the inhibitory action of artemisinin on TNFα production in LPS-activated BV2 

microglia is dependent on Nrf2 activity.  

Similarly, Nrf2 silencing significantly enhanced LPS induced IL-6 production in BV2 microglia 

(Figure 27 b). Pre-treatment with artemisinin (40 µM) significantly (p<0.001) reversed the 

inhibitory effect of artemisinin on IL-6 production in Nrf2 knockout cells.  
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Figure 27: Inhibition of pro-inflammatory cytokines TNF and IL-6 by artemisinin in LPS activated BV2 
cells is dependent on Nrf2 activity.  

BV2 microglia cells were transfected with Nrf2 siRNA, treated with artemisinin (40 µM) for 30 minutes 
and stimulated with LPS (1 μg/ml) for 24 hours. Cell supernatants were analysed using an ELISA. (A) 
Inhibition of TNFα production in LPS-activated BV2 cells by artemisinin is dependent on Nrf2 activity. 

(B) Inhibition of IL-6 production in LPS-activated BV2 cells by artemisinin is dependent on Nrf2. All 
values are expressed as mean ± SEM for at least 3 independent experiments. Data were analysed 

using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. θp<0.05, 
θθθp< 0.001 in comparison with -siNrf2 LPS control. #p<0.05, ###p<0.001 in comparison with -siNrf2 

40 μM artemisinin treatment. 

 

3.3.3. Inhibition of PGE2 production in LPS-stimulated BV2 cells by artemisinin is 

dependent on Nrf2. 

Nrf2-silenced BV2 cells were pre-treated with artemisinin (40 µM) for 30 minutes prior to 

LPS stimulation for 24 hours. Thereafter, PGE2 concentration was determined. Figure 28 

show that Nrf2 knockout significantly (p<0.001) enhanced PGE2 production following LPS 

stimulation. Pre-treatment of Nrf2-silenced BV2 cells with artemisinin (40 µM) significantly 

(p<0.001) reversed the inhibitory effect of artemisinin on PGE2 production. This result 

suggests that the effect of artemisinin on PGE2 production in LPS activated BV2 cells is 

dependent of Nrf2. 
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Figure 28: Inhibition of PGE2 production in LPS-activated BV2 microglia cells by artemisinin is 
dependent on Nrf2 activity.  

BV2 microglia cells were transfected with Nrf2 siRNA, pre-treated with artemisinin (40 µM) for 
30 minutes and stimulated with LPS (1 μg/ml) for 24 hours. Cell supernatants were collected and 

analysed for PGE2 production using PGE2 EIA assay. All values are expressed as mean ± SEM for at 
least 3 independent experiments. Data were analysed using one-way ANOVA for multiple 

comparisons with post-hoc Student Newman-Keuls test. θp<0.05, θθθp<0.001 in comparison with -
siNrf2 LPS control. #p<0.05, ###p<0.001 in comparison with -siNrf2 40 μM artemisinin treatment. 

 

3.4. Treatment with artemisinin did not affect cell viability 

Results of viability experiments show that artemisinin (5-40 µM) did not affect cell viability of 

BV2 microglia cells (Figure 29). 
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Figure 29: Artemisinin did not affect cell viability of BV2 cells.  
BV2 cells were pre-treated with artemisinin (5-40 µM) for 30 minutes and subsequently stimulated 

with LPS (1 µg/ml) for 24 hours. Thereafter, MTT viability assay was performed. All values are 
expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 

 

3.5. Discussion 

The anti-inflammatory activity of artemisinin has been explored in many cell types (Ho et al., 

2014). However prior to this study, its effect in LPS activated BV2 microglia cells had not 

been fully explored. A previous study using primary microglia by Zhu et al (2012) 
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investigated the effect of artemisinin on NF-B signalling following LPS activation. In this 

study, the effect of artemisinin on NF-B and p38 MAPK signalling pathways, which play a 

huge role in neuroinflammation, was investigated. In addition, the effect of the drug on Nrf2 

antioxidant system as well as the role of Nrf2 on the anti-neuroinflammatory properties was 

studied. Findings from Zhu et al (2012) support the results from this study, which will be 

discussed in subsequent paragraphs. 

Results from the MTT assay showed that the compounds did not affect cell viability. This 

was taken as a preliminary data to ensure that the results obtained from the study were not 

dependent on toxicity. Subsequent investigation on nitrite production was carried out and 

also used as another preliminary data and a pointer to determine whether artemisinin 

possessed anti-inflammatory properties. From the results obtained artemisinin inhibits nitric 

oxide production as well as iNOS an important enzyme important for its production in 

inflammatory conditions. In addition, nitric oxide and iNOS are important participants in 

nitrosative stress, which is chiefly involved, in the early pathogenesis of neuroinflammation 

and demyelination (Ghasemi & Fatemi, 2014; Ljubisavljevic & Stojanovic, 2014). Hence, this 

inhibitory action of artemisinin might be beneficial in situations involving neuroinflammation 

and demyelination. This observation was also reported in the work of Zhu et al, 2012 in LPS-

activated primary microglia. Therefore, validating the results obtained from this study that 

artemisinin inhibits iNOS mediated NO production.  

Artemisinin also suppressed PGE2 production in LPS activated microglia cells by inhibiting 

COX-2 and mPGES-1 protein expression. Interestingly, inhibition of mPGES-1 was 

significant at all concentrations (p<0.001). This observation suggests that inhibition of PGE2 

by artemisinin is probably more via inhibition of mPGES-1 in LPS activated BV2 cells. These 

results suggest that a component of the anti-inflammatory activity of artemisinin involves 

inhibition of PGE2/COX-2/mPGES-1. This is the first time artemisinin is shown to inhibit 

PGE2/COX-2/mPGES-1 in LPS activated microglia cells.  

Furthermore, artemisinin inhibited the production of TNFα and IL-6. With the microglia been 

the major source of cytokines (Olmos & Llado, 2014) during neuroinflammation, it is 

significant that artemisinin inhibits the production of these cytokines. This is because 

microglia-driven production of pro-inflammatory cytokines activates astrocytes, which further 

generates pro-inflammatory mediators, which can be detrimental to neurons (Glass et al., 

2010). Supporting this inhibitory effects are the findings from a closely related study by Zhu 

et al. (2012) which also showed that artemisinin inhibited proinflammatory cytokines TNFα 

and IL-6 in primary microglia cells following stimulation with LPS. Taken together, this 

present study and the study by Zhu et al. (2012) strongly support that artemisinin inhibits 

proinflammatory cytokine production. This is important because these pro-inflammatory 
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cytokines contribute to the pathogenesis of various neurodegenerative disorders, including 

Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, multiple sclerosis (Erta et 

al., 2012; Frankola et al., 2011). 

To understand the molecular mechanism(s) involved in the anti-neuroinflammatory actions of 

artemisinin, its effects on NF-B signalling and p38MAPK signalling were investigated. 

Results showed that artemisinin inhibits nuclear translocation as well as DNA binding of NF-

B.  

Following the observation that artemisinin exerted inhibitory effects on NF-B translocation 

and DNA binding, the effect of artemisinin on upstream targets of NF-B signalling was 

investigated. The compound inhibited both phosphorylation and degradation of IB, without 

affecting phosphorylation of IKK. This suggests that the artemisinin targets NF-B signalling 

by blocking IB phosphorylation and degradation. Zhu et al. (2012) also reported that the 

artemisinin inhibited NF-B activity in primary microglia following stimulated with LPS. 

Artemisinin was shown to inhibit p38MAPK protein expression. This is important, as the 

p38MAPK pathway has been suggested to play a central role in the expression and activity 

of pro-inflammatory cytokines. MKK3/6 is a kinase that is responsible for the phosphorylation 

of p38MAPK. Artemisinin was shown for the first time to inhibit the phosphorylation of this 

kinase following LPS stimulation. This observation suggested that artemisinin interfere with 

p38MAPK signalling by inhibition of MKK3/6.  

Upon activation of p38MAPK, the active kinase can activate transcription factors such as 

AP-1 by acting on its substrate MAPKAPK2. Artemisinin also inhibited MAPKAPK2 in LPS 

activated BV2 cells. This inhibitory action of artemisinin is significant as MAPKAPK2 

deficiency has been reported to inhibit pro-inflammatory mediator release in transgenic 

mouse model of AD (Culbert et al., 2006). This is also the first time artemisinin has been 

shown to have inhibitory actions against MAPKAPK2 in BV2 cells following LPS stimulation. 

After the M1 phase, the microglia progresses to the M2 phase which helps in recovery and 

restoration of homeostasis. To date, the Nrf2 signalling pathway has been strongly 

implicated in the activities observed in the M2 phase of the microglia (Cherry et al., 2014). 

Nrf2 activity controls HO-1, a phase II detoxifying and antioxidant enzyme, which have been 

implicated in the modulation of inflammatory responses (Zhang et al., 2013). Artemisinin was 

shown to activate HO-1 protein expression in BV2 cells.  

Upon activation, Nrf2 translocate to the nucleus where it binds to ARE promoter region. 

Hence, the effect to artemisinin on Nrf2 was investigated. Artemisinin activated nuclear 

translocation of Nrf2. However, it was observed that this activation was at different time 
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points (15 and 120 minutes). An exact reason as to why this is so is not fully understood. 

However, this observation suggests that artemisinin activates Nrf2 mediated HO-1 protein 

expression. This is very important as in most CNS diseases involving neuroinflammation; the 

cell program is distorted causing the cells to remain in the M1 phase without proper recovery 

by progression to the M2 phase. Nuclear Nrf2 binds to ARE and transcriptionally regulate a 

set of protective genes, including HO-1 (Zhang et al., 2013). To further elucidate the effect of 

artemisinin on Nrf2, the effect on ARE reporter was investigated, and results showed that 

artemisinin activated ARE luciferase activity. This is the first time artemisinin is reported to 

activate Nrf2 mediated HO-1 activity. However, further investigations to understand why the 

compound activated Nrf2 at two time points need to be further examined. 

Induction of Nrf2 by compounds has been reported to correlate directly with the inhibition of 

COX-2 and iNOS expression (Baird & Dinkova-Kostova, 2011). To gain a further 

understanding as to whether the effect of artemisinin on neuroinflammation was dependent 

on Nrf2 activity, experiments were carried out in Nrf2-silenced BV2 cells. Results obtained 

from the analysis of samples from Nrf2-silenced cells showed that Nrf2 did not affect 

inhibitory effect of artemisinin on of nitrite production. It is important to note that at the 

concentration investigated (40µM); artemisinin totally blocked NO production in both wild 

type and Nrf2-silenced BV2 cells. This highlights the possibility of a different outcome at 

lower concentration, which should be further investigated. On the other hand, the inhibition 

of TNFα, IL-6 and PGE2 in LPS-activated BV2 cells by artemisinin was found to be 

dependent on Nrf2 gene. This is the first time artemisinin is shown to induce Nrf2 activity. It 

is also the first time a relationship between the inhibitory actions of the compound has been 

linked to the antioxidant activity. 

In summary, artemisinin has been shown in these experiments to exert anti-

neuroinflammatory properties and to activate the Nrf2 signalling pathway in BV2 microglial 

cells. In comparison with the findings of Zhu et al. (2012), the findings of this study is much 

more elaborate highlighting the signalling pathways (NF-B, p38MAPK and Nrf2) that are 

involved in the activity of artemisinin in neuroinflammation. 
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CHAPTER 4 

STUDIES ON ARTEMETHER 
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4. Studies on Artemether 

4.1. Background 

Artemether, the lipid-soluble derivative of artemisinin has been shown to have promising 

anti-inflammatory effects in various cell types (Cuzzocrea et al., 2005; Wu, 2011). 

Artemether was investigated for possible inhibition of neuroinflammation in BV2 microglia. 

4.1.1. Artemether inhibits nitrite production in LPS-activated BV2 microglia 

Following activation of the microglia, nitric oxide, an important mediator for regulating chronic 

inflammation in the CNS is released. Therefore, the effect of artemether on nitrite production 

was investigated. Results obtained show that nitrite production is significantly increased 

following LPS stimulation in comparison to the unstimulated cells (Figure 30 a).  

 

Figure 30: Artemether inhibited iNOS mediated NO production in LPS activated BV2 cells.  
(A) Artemether inhibited the nitrite production in LPS-activated BV2 cells. Supernatants from 24 hours 

stimulation were analysed for nitrite production. (B) Artemether (20 and 40 µM) attenuated iNOS 
protein expression in LPS activated BV2 cells. Whole cell extracts from 24 hours stimulation were 

analysed for iNOS protein expression using western blot. All values are expressed as mean ± SEM 
for three independent experiments. Data were analysed using one-way ANOVA for multiple 

comparison with post hoc Student Newman-Keuls test. *p<0.05, **p<0.01, ***p<0.001, in comparison 
with LPS control. θp<0.05, θθθp<0.001 in comparison with negative control (untreated cells). 
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On the other hand, pre-treatment with artemether (5-40 µM) suppressed nitrite production 

significantly in a concentration-dependent manner (Figure 30 a). At 10 µM of artemether, 

nitrite production was 42.3 %. Subsequent increases in concentration to 20 µM and 40 µM 

resulted in 35.8 % and 28.68 % nitrite production, respectively. 

Further investigations to understand the inhibitory effects of artemether on nitrite production 

showed that at lower concentrations (5 and 10 µM), artemether did not inhibit iNOS protein 

expression. However, artemether (20 and 40 µM) suppressed iNOS protein expression 

following LPS stimulation (Figure 30 b). These results suggest that at higher concentrations, 

artemether inhibited iNOS mediated NO production in LPS-activated BV2. 

4.1.2. Artemether suppresses PGE2 production in LPS stimulated BV2 microglia by 

inhibiting COX-2 and mPGES-1 proteins 

Stimulation of BV2 cells with LPS (1 µg/ml) significantly increased PGE2 production (Figure 

31 a). However, pre-treatment with artemether (5-40 µM) significantly (p<0.05) suppressed 

PGE2 production in LPS-activated BV2 microglia cells. 

Following the observation that artemether could reduce PGE2 production, the effect of the 

compound on COX-2 protein expression was then investigated. Figure 31 b shows that at 

5 µM, artemether did not significantly inhibit COX-2 protein expression. However, pre-

treatment with artemether (10-40 µM) resulted in a significant (p<0.05) reduction in COX-2 

protein expression (Figure 31 b). At 20 µM and 40 µM, COX-2 protein expression was found 

to be 60 % and 50 % respectively when compared to the LPS control (p<0.001). 

It was also observed that pre-treatment with artemether (5-40 µM) significantly (p<0.001) 

suppressed mPGES-1 protein (Figure 31 c). From these observations, it can be concluded 

that artemether suppressed PGE2 production in LPS-activated BV2 microglia cells by 

inhibiting COX-2 and mPGES-1 protein expression. 
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Figure 31: Artemether inhibited PGE2 production in LPS activated BV2 microglia cells via dual 
inhibition of COX-2 and mPGES-1 proteins. 

(A) Artemether (5-40 μM) suppressed PGE2 production in LPS-stimulated BV2 microglia cells (B) 
Artemether (10-40 µM) inhibited COX-2 protein expression in LPS-activated BV2 microglia cells. (C) 

Artemether inhibited mPGES-1 protein expression in LPS-stimulated BV2 cells. All values are 
expressed as mean ± SEM for three independent experiments. Data were analysed using one-way 

ANOVA for multiple comparison with post hoc Student Newman-Keuls test. *p<0.05, **p<0.01, 
***p<0.001, in comparison with LPS control. θp<0.05, θθθp<0.001 in comparison with negative control 

(untreated cells). 

 

4.1.3. Artemether reduces the production of TNFα and IL-6 in LPS-activated BV2 

microglia 

Following stimulation with LPS (1 µg/ml), levels of secreted TNFα were significantly 

increased (p<0.001) in culture supernatants of BV2 microglia (Figure 32 a). However, 

pre-treatment with artemether (10-40 μM) resulted in a significant (p<0.05) concentration-

dependent reduction of TNFα production. At 40 μM TNFα production was 18 % when 

compared to the LPS control (p<0.001). 

Experiments also showed that pre-treatment with artemether (5-40 μM) significantly (p<0.05) 

suppressed IL-6 production in LPS-activated BV2 cells in a concentration-dependent manner 

(Figure 32 b). At a concentration of 5 µM, artemether produced 63.6 % of IL-6, compared 

with LPS control. Subsequent increase in concentrations to 10, 20 and 40 µM resulted in 

51.4 %, 40.6 % and 26.8 % of IL-6 production, respectively. 
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Figure 32: Artemether suppressed the production of proinflammatory cytokines TNFα and IL-6 in LPS-
activated BV2 microglia cells. 

Culture supernatants from 24hour stimulation were analysed using an ELISA. (A). Artemether (10-
40 µM) inhibited TNFα production in LPS-activated BV2 microglia cells. (B). Artemether (5-40 µM) 

attenuated IL-6 production in LPS-activated BV2 microglia cells. All values are expressed as mean ± 
SEM for three independent experiments. Data were analysed using one-way ANOVA for multiple 

comparison with post hoc Student Newman-Keuls test. *p < 0.05, **p<0.01, ***p<0.001 in comparison 
with LPS control. θp<0.05, θθθp<0.001 in comparison with negative control (untreated cells). 

 

4.1.4. Artemether inhibits neuroinflammation in LPS-activated BV2 microglia by 

inhibiting IB/NF-B signalling. 

Regulation of pro-inflammatory genes like iNOS which controls nitrite production, and COX-2 

which mediates PGE2 production in activated microglia is controlled by NF-B signalling. 

Based on observations showing that artemether inhibited iNOS/NO, COX-2/mPGES-1/PGE2 

as well as pro-inflammatory cytokines TNFα and IL-6, its effect on NF-B signalling was 

investigated. 

First, an experiment to determine the effect of artemether on NF-B luciferase activity was 

done. Results obtained show that artemether (5-40 µM) inhibited NF-B regulated luciferase 

reporter gene expression following stimulation with TNFα (1 ng/ml) (Figure 33). Interestingly, 
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at all concentrations, the percentage luciferase activity was less than 50 % in comparison to 

TNFα control. This observation suggests that artemether inhibit NF-B activity generally.  
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Figure 33: Artemether suppressed NF-B activity in HEK293 cells transiently transfected with NF-B 
construct.  

NF-B transfected HEK293 cells were stimulated with TNFα (1 ng/ml) in the absence or presence of 

artemether (5-40 µM) for 6 hours. Luminescence measurement was used as a measure of NF-B 
activity. All values are expressed as mean ± SEM for at least 3 independent experiments. Data were 
analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 
*p<0.05, ***p<0.001 in comparison with TNFα control. θp<0.05, θθθp<0.001 in comparison with negative 

control (untreated cells). 

 

Under resting conditions, NF-B dimers are bound in the cytoplasm to inhibitory IB 

proteins, which sequester inactive NF-B complexes. However, following stimulation, the IB 

proteins are phosphorylated and degraded. Hence, the effect of artemether on IB-α 

phosphorylation and degradation was investigated. Figure 34 a shows that pre-treatment 

with artemether (5 and 10 µM) did not significantly inhibit IB-α phosphorylation induced by 

LPS stimulation. However, treatment with artemether (20 and 40 µM) resulted in significant 

(p<0.05) inhibition of phospho-IB-α protein expression (Figure 34 a). Interestingly, 

artemether (10 µM) inhibited the degradation of IB-α (Figure 34 a). However the effects at 

20 and 40 µM were not statistically significant. 

Free NF-B subunits released upon phosphorylation and degradation of IB translocate to 

the nucleus where they bind to the DNA and regulate transcriptional activity of pro-

inflammatory genes.  
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Figure 34: Artemether inhibited IB/NF-B signalling in LPS-activated microglia cells. 

(A) Artemether inhibited IB-α phosphorylation and degradation in LPS-activated BV2 cells. Whole 

cell extracts from 1 hour stimulation were analysed for phospho- and total IB-α protein using western 
blot. (B) Artemether suppressed p65 translocation in LPS-activated BV2 microglial cells. Nuclear 
extracts from 1 hour stimulation were analysed for p65 protein expression using western blot. (C) 

Artemether inhibited NF-B DNA binding in LPS-activated BV2 microglia cells. 1hour stimulation 

nuclear extracts were incubated with NF-B oligonucleotide for 30 minutes and analysed for NF-B 
binding using EMSA. All values are expressed as mean ± SEM for at least 3 independent 

experiments. Data were analysed using one-way ANOVA for multiple comparisons with post-hoc 
Student Newman-Keuls test. *p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp<0.001 

in comparison with negative control (untreated cells). 
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As a result of the observed inhibitory effect of artemether on the phosphorylation and 

degradation of IB-α, it was considered worthwhile to determine whether the compound 

could affect nuclear translocation of p65 subunit. Figure 34 b shows that upon activation with 

LPS, nuclear expression of phospho-p65NF-B was significantly increased. The results also 

show that pre-treatment with artemether (5-40 µM) significantly (p<0.05) inhibited protein 

expression of phospho-p65NF-B in the nucleus in LPS-activated BV2 cells. This suggests 

that in LPS-activated BV2 cells that artemether inhibited nuclear translocation of the p65 

subunit (Figure 34 b).  

Subsequently the effect of artemether on DNA binding of NF-B was investigated in an 

EMSA. At 5 µM artemether did not affect DNA binding of NF-B (Figure 34 c). However, 

artemether (10-40 µM) inhibited DNA binding of NF-B to the promoter region in the 

nucleus. These results suggest that not only does artemether inhibit IB-α phosphorylation 

and degradation; it also inhibits p65NF-B translocation to the nucleus and binding to the 

DNA. 

 

 

Figure 35: Artemether (5-40 µM) did not inhibit phosphorylation of IKK in LPS-activated BV2 cells 
significantly. 

BV2 microglia cells were stimulated with LPS (1 µg/ml) for 10 minutes in the absence or presence of 
artemether (5-40 µM). Whole cell extracts were collected and analysed for p-IKK and total IKK protein 
expressions using western blot. All values are expressed as mean ± SEM for at least 3 independent 

experiments. Data were analysed using one-way ANOVA for multiple comparisons with post-hoc 
Student Newman-Keuls test. *p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp<0.001 

in comparison with negative control (untreated cells). 

 

In NF-B signalling, stimulus-induced phosphorylation and degradation of IB proteins is 

initiated through phosphorylation by the IB kinase (IKK) complex. Therefore, to further 

elucidate the molecular mechanisms involved in the anti-neuroinflammatory activity of 
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artemether, its effect on phospho-IKK protein was investigated. Figure 35 show that 

artemether did not have significant inhibitory effect on phospho-IKK protein expression in 

LPS-activated BV2 cells. This result suggests that artemether may interfere with NF-B 

signalling by targeting IB phosphorylation and degradation directly. 

4.1.5. Artemether targets p38MAPK signalling to exert anti-neuroinflammatory 

actions in LPS activated BV2 microglia. 

Stimulation of BV2 microglia for 1 hour resulted in a significant (p<0.001) increase in 

phospho-p38 protein expression when compared to the untreated control (Figure 36). 

However, pre-treatment with artemether (5-40 μM) led to a significant (p<0.001) reduction in 

the expression of this protein (Figure 36). 

 

Figure 36: Artemether inhibited phospho-p38 protein expression in LPS-activated BV2 microglia cells.  
Whole cell extracts from 1 hour stimulation were analysed for phospho-p38 and total p38 protein 

expression with anti-phospho-p38 and anti-total p38 antibody. All values are expressed as mean ± 
SEM for 3 independent experiments. Data were analysed using one-way ANOVA for multiple 

comparisons with post-hoc Student Newman-Keuls test. *p<0.05, **p<0.01, ***p<0.001 in comparison 
with LPS control. θp<0.05, θθθp<0.001 in comparison with Negative control (untreated cells). 

 

To further elucidate the effect of artemether on p38MAPK signalling, its effect on MKK3/6 

was investigated. Figure 37a show that stimulation with LPS significantly (p<0.001) induced 

the phosphorylation of MKK3/6. However, pre-treatment with artemether (5-40 μM) 

significantly suppressed the phosphorylation of MKK3/6 (Figure 37 a). This suggests that 

artemether inhibited p38MAPK phosphorylation via direct suppression of MKK3/6 

phosphorylation. 
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Figure 37: Artemether inhibited phospho-MKK3/6 and phospho-MAPKAPK2 protein expression in 
LPS-activated BV2 microglia cells.  

Whole cell extracts from 1 hour stimulation were analysed for p-MKK3/6 and p-MAPKAPK2 protein 
expression. (A). Artemether (5-40 µM) suppressed MKK3/6 phosphorylation in LPS-activated BV2 

cells. (B) Artemether (20 & 40 µM) inhibited MAPKAPK2 phosphorylation in LPS-activated BV2 
microglia cells. All values are expressed as mean ± SEM for 3 independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 
θp<0.05, θθθp<0.001 in comparison with negative control (untreated cells). *p<0.05, ***p<0.001 in 

comparison with LPS control. 

 

Phosphorylated p38MAPK protein activates transcription factors by acting on MAPKAPK2. 

Therefore, the effect of artemether on the phosphorylation of MAPKAPK2 was investigated. 

It was observed that there was a marked increase in phospho-MAPKAPK2 protein 

expression following stimulation of BV2 cells with LPS (Figure 37 b) However, pre-treatment 

with artemether (20 and 40 μM) caused a reduction in blocked the phospho-MAPKAPK2 

protein (Figure 37 b).  
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4.2. Artemether activates Nrf2/HO-1 antioxidant protective mechanism in BV2 

microglia 

Following the observation that artemether blocked neuroinflammation by targeting NF-B 

and p38MAPK signalling in BV2 microglia, it was decided to explore if the Nrf2/HO1 

antioxidant system played any role in the activity.  

Firstly, the effect of artemether on HO-1 protein expression was investigated. Results from 

these experiments showed that in comparison with untreated cells, HO-1 was activated by 

40 μM of artemether after 24 hours of treatment (Figure 38). 

 

Figure 38: Artemether activated HO-1 in BV2 microglia cells. BV2 cells were treated with artemether 
(5-40 µM) for 24 hours.  

Whole cell extracts were collected and analysed for HO-1 protein expression using western blot. All 
values are expressed as mean ± SEM for at least 3 independent experiments. Data were analysed 

using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, 
***p<0.001 in comparison with control. 

 

Nrf2 activates a battery of antioxidant and cytoprotective genes that have in common a cis-

acting enhancer sequence known as ARE. Therefore, to further understand how artemether 

could be affecting the antioxidant protective mechanisms in the microglia, its effect on the 

ARE activity was investigated. HEK 293 cells were transiently transfected with ARE 

construct, followed by treatment with artemether. Results obtained show that treatment with 

artemether increased ARE luciferase activity in a concentration-dependent manner (Figure 

39). 
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Figure 39: Artemether activated ARE luciferase activity in HEK293 cells transfected with ARE 
construct. 

HEK293 cells were transfected with ARE-reporter construct for 18 hours. Thereafter, cells were 
treated with artemether (5-40 μM) for 8 hours. Luciferase activity was measured with fluorescence. All 

values are expressed as mean ± SEM for at least 3 independent experiments. Data were analysed 
using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, 

***p<0.001 in comparison with control. 

Subsequently, the effect of artemether on nuclear Nrf2 protein expression was investigated. 

BV2 cells were treated with artemether (40 µM) for 15, 30, 60 120 and 180 minutes. At 

40 µM artemether produced significant activation of Nrf2 at 15 and 120 minutes of treatment 

(Figure 40).  

 

Figure 40: Artemether (40 µM) activates Nrf2 protein expression in BV2 microglia cells.  
BV2 microglia cells were treated with artemether (40 µM) for 0 - 180 minutes. Thereafter, nuclear 
extracts were collected and analysed for Nrf2 protein expression using western blot. All values are 
expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 
in comparison with control. 
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4.3.1. Inhibition of nitric oxide production by artemether is independent of Nrf2  

Nrf2-silenced BV2 cells were pre-treated with artemether prior to LPS stimulation for 

24 hours. This was followed by determination of nitrite. Results obtained show that nitrite 

production was significantly (p<0.001) enhanced in Nrf2 silenced cells (Figure 41). However, 

pre-treatment with artemether did not reverse the inhibitory effect of artemether on nitrite 

production in Nrf2 knockout cells (Figure 41), suggesting that the inhibitory actions of 

artemether on nitrite production is independent of Nrf2 activity. 
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Figure 41: Inhibition of NO in LPS-activated BV2 cells by artemether is independent of Nrf2 activity.  
Nrf2 silenced BV2 microglia cells were stimulated with LPS (1 μg/ml) for 24 hours after pre-treatment 

with artemether (40 µM). Subsequently, culture supernatants were collected and analysed for NO 
production using Griess Assay. All values are expressed as mean ± SEM for at least 3 independent 

experiments. Data were analysed using one-way ANOVA for multiple comparisons with post-hoc 
Student Newman-Keuls test. θp<0.05, θθθp<0.001 in comparison with –siNrf2 LPS control. 

 

4.3.2. Inhibition of TNFα and IL-6 production in LPS-stimulated BV2 cells by 

artemether is dependent on Nrf2  

Nrf2-silenced BV2 cells were pre-treated with artemether and stimulated with LPS for 

24 hours. Thereafter, supernatants were analysed for TNFα production. Nrf2 knockout 

significantly (p<0.001) enhance LPS-induced TNFα production. Furthermore, pre-treatment 

with artemether reversed the inhibitory effects of artemether on TNFα production (Figure 

42 a). These results suggest that the inhibitory effect of artemether on TNFα production is 

dependent of Nrf2 activity. 

In addition, the effect of Nrf2 on the inhibitory actions of artemether on IL-6 production was 

investigated. Stimulation with LPS significantly enhanced IL-6 production in Nrf2-silenced 

BV2 cells (Figure 42 b). However, pre-treatment with artemether reversed the inhibitory 

effects of artemether on IL-6 production. This observation shows that the effects of 

artemether on IL-6 production in BV2 cells are dependent of Nrf2 activity.
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Figure 42: Inhibition of TNFα and IL-6 by artemether in LPS-activated BV2 cells is dependent on Nrf2 
activity. 

Nrf2-silenced BV2 cells were pre-treated with artemether prior to LPS stimulation for 24 hours. 
Subsequently culture supernatants were analysed for TNFα and IL-6 production using an ELISA. (A) 

Inhibition of TNFα production in LPS activated BV2 cells is dependent on Nrf2 activity. (B) Inhibition of 
IL-6 production in LPS-activated BV2 cells is dependent on Nrf2 activity. All values are expressed as 
mean ± SEM for at least 3 independent experiments. Data were analysed using one-way ANOVA for 
multiple comparisons with post-hoc Student Newman-Keuls test. θ p<0.05, θθθp< 0.001 in comparison 
with -siNrf2 LPS control. #p<0.05, # # #p<0.001 in comparison with -siNrf2 40 μM artemether treatment. 

 

4.3.3. Inhibition of PGE2 production in LPS-stimulated BV2 cells by artemether is 

dependent on Nrf2 

Nrf2-silenced BV2 cells were pre-treated with artemether prior to LPS stimulation for 

24 hours, followed by determination of PGE2 production. Results show that Nrf2 knockout 

enhanced PGE2 production on LPS stimulation (Figure 43). However, pre-treatment with 

artemether (40 µM) reversed the inhibitory effects of artemether on PGE2 production in Nrf2 

knockout cells (Figure 43). This result show that the effects of artemether on PGE2 

production in LPS activated BV2 cells is dependent on Nrf2.  
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Figure 43: Inhibition of PGE2 production by artemether in MPS-activated BV2 microglia is dependent 
on Nrf2 activity.  

BV2 microglia cells were transfected with Nrf2 siRNA, pre-treated with artemether (40µM) for 
30 minutes and stimulated with LPS (1 μg/ml) for 24 hours. Culture supernatants were collected and 
analysed for PGE2 production. All values are expressed as mean ± SEM for at least 3 independent 
experiments. Data were analysed using one-way ANOVA for multiple comparisons with post-hoc 

Student Newman-Keuls test. θ p<0.05, θθθp< 0.001 in comparison with -siNrf2 LPS control. #p<0.05, 
###p<0.001 in comparison with wild-type 40 μM artemether treatment. 

 

4.4. Artemether (5-40 µM) did not affect cell viability 

To ascertain that artemether (5-40 µM) did not affect cell viability, BV2 cells were stimulated 

for 24 hours in the presence or absence of artemether (5-40 µM). Thereafter, MTT assay 

was carried out on the cells. Results obtained (Figure 44) show that artemether did not affect 

cell viability in BV2 microglia cells. 
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Figure 44: Artemether did not affect cell viability of BV2 cells. 
BV2 cells were pre-treated with artemether (5-40 µM) for 30 minutes and subsequently stimulated 

with LPS (1 µg/ml) for 24 hours. Thereafter, MTT viability assay was performed. All values are 
expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 
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4.5. Discussion 

In this study, the anti-neuroinflammatory property of artemether was investigated in LPS-

activated BV2 cells. Concentrations used for the study was determined through the MTT 

assay which showed that chosen concentrations were not toxic. First, the effect of 

artemether on nitric oxide was evaluated. Result obtained showed that artemether 

significantly inhibited nitrite production in LPS-activated BV2 cells at all concentrations. 

However, high concentrations of artemether (20 and 40 µM) significantly decreased iNOS 

protein expression, suggesting that the compound suppresses NO/iNOS in 

neuroinflammation. This is the first time artemether is shown to inhibit iNOS mediated NO 

production in LPS activated BV2 microglia cells. The outcome of the effect of artemether on 

NO production also served as a preliminary data and pointer that the compound might 

possess anti-neuroinflammatory properties. 

Increased COX-2-mediated PGE2 production is associated with inflammatory 

pathophysiological conditions. Therefore, to further understand the possible anti-

neuroinflammatory effect of artemether (5-40 µM); the effect on PGE2 production following 

LPS-stimulation of BV2 cells was investigated. Artemether (5-40 µM) significantly inhibited 

PGE2 production in LPS-activated BV2 cells. To further elucidate the inhibitory actions of 

artemether on PGE2, its effect on COX-2 was investigated. Artemether (10-40 µM) also 

significantly inhibited COX-2 protein expression in LPS-activated BV2 microglia cells. It is 

noteworthy that at 5µM artemether did not inhibit COX-2 protein expression but inhibited 

PGE2 production. Interestingly, artemether significantly inhibited mPGES-1 protein 

expression in LPS activated BV2 cells at all concentrations investigated. This result suggests 

that the inhibitory action of artemether on PGE2 in LPS activated BV2 microglia cells was 

probably mediated mainly through its inhibition of mPGES-1. 

Pro-inflammatory cytokines have been reported to play a significant role in the progression 

of CNS neuroinflammatory diseases including AD, PD, MS, and ALS. Therefore, the effect of 

artemether on TNFα and IL-6 secretion was investigated. Artemether (10-40 µM) 

significantly inhibited TNFα production in LPS-activated BV2 cells. However, it significantly 

inhibited IL-6 production at all concentrations investigated. These observations suggest that 

artemether inhibits pro-inflammatory cytokines; TNFα and IL-6, produced in LPS activated 

BV2 microglia cells. 

The NF-B signalling pathway is known to regulate the genes involved in the production of 

pro-inflammatory mediators including iNOS, COX-2 and the pro-inflammatory cytokines, 

TNFα and IL-6. Hence, to further understand the possible mechanism involved in the 

inhibitory actions of artemether on pro-inflammatory mediators, the NF-B signalling was 
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investigated. Artemether inhibited NF-B luciferase activity. This observation suggests that 

artemether might possess inhibitory actions against the NF-B signalling pathway. 

To further elucidate the effect of artemether on NF-B signalling, its effect on IB, a kinase 

that holds NF-B subunits in an inactive state in the cytoplasm, was investigated. Upon 

activation of NF-B signalling, IB is phosphorylated and degraded releasing the NF-B 

subunits. Results obtained showed that artemether inhibited IB phosphorylation and 

degradation in LPS-activated BV2 cells. In other for IB phosphorylation to occur, IKK is 

phosphorylated. Hence, the effect of artemether on IKK phosphorylation was investigated. 

Results obtained show that artemether did not inhibit IKK phosphorylation. This observation 

suggests that the inhibitory actions of artemether on NF-B signalling by directly targeting 

IB. 

Free NF-B subunits translocate to the nucleus binds to the DNA and regulate gene 

transcriptional activity of pro-inflammatory mediators. Subsequently, the effect of artemether 

on nuclear phospho-p65 was investigated. Artemether significantly inhibited phospho-p65 

protein expression at all concentrations, suggesting that artemether inhibits nuclear 

translocation of p65 subunit. Artemether also inhibited DNA binding of NF-B. Taken 

together; it is proposed that artemether interferes with NF-B signalling by inhibiting IB-

mediated NF-B translocation and binding to the DNA. 

p38MAPK signalling has been suggested to play a role in the expression and activity of pro-

inflammatory cytokines. Consequently, artemether was shown to significantly suppress 

phosphorylation of p38MAPK and its upstream kinase MKK3/6 in LPS activated BV2 cells. 

Activated p38MAPK activate transcription factors by acting on its substrate MAPKAPK2. 

Artemether was also shown to inhibit the phosphorylation of its downstream substrate; 

MAPKAPK2 in LPS activated BV2 microglia cells. The findings appear to suggest that the 

anti-inflammatory action of artemether in LPS-activated microglia is mediated in part through 

the interference of p38 MAPK signalling pathway. 

The restoration of homeostasis in the microglia following an inflammatory challenge has 

been reported to involve the Nrf2 pathway (Rojo et al., 2014). Nrf2 activity controls HO-1, a 

phase II detoxifying and antioxidant enzyme. Artemether significantly activated HO-1 protein 

expression in BV2 microglia cells, suggesting some antioxidant activity. Upon activation, 

Nrf2 translocate to the nucleus where it regulates the transcription of HO-1 by binding to 

ARE. Artemether activated both nuclear Nrf2 and ARE luciferase activity in BV2 microglia. It 

can thus be concluded that artemether activates ARE reporter-mediated Nrf2/HO-1 

antioxidant protective mechanisms  
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Having shown that artemether exerted inhibitory effects on neuroinflammation, as well as 

activating the Nrf2 mechanisms in the microglia; it became necessary to explore the 

relationships between these two activities. Consequently, Nrf2 gene was silenced in BV2 

cells, which were then stimulated with LPS and levels of pro-inflammatory factors measured. 

Results show that the inhibitory action of artemether on nitrite production in LPS activated 

BV2 cells is independent of Nrf2. However, the inhibition of TNFα, IL-6 and PGE2 of 

artemether in LPS-activated BV2 cells is dependent on Nrf2 activity. 

In summary, the study on artemether demonstrates that the anti-neuroinflammatory activity 

of artemether in LPS activated BV2 cells is mediated through the NF-B and p38MAPK-

signalling pathway. The study also demonstrates that artemether activates Nrf2 mediated 

HO-1 expression, which may account for some of this anti-inflammatory effects. It is 

important to highlight that this study on artemether provides the first evidence that 

artemether possess anti-neuroinflammatory actions in LPS activated microglia. It is also the 

first time that the inhibitory actions on pro-inflammatory cytokines TNFα and IL-6 as well as 

PGE2 are linked to the activation of Nrf2. 
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CHAPTER 5 

STUDIES ON ARTESUNATE 
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5. Studies on Artesunate  

5.1. Background 

Artesunate, the water-soluble derivate of artemisinin has been reported to show 

anti-inflammatory effects in various cell types. Although artesunate is one of the most 

studied derivatives of artemisinin, a detailed study of its mechanism of action in 

LPS-activated BV2 microglia has not been conducted. 

5.1.1. Artesunate suppressed iNOS mediated nitrite production in LPS-activated BV-

2 microglia cells. 

Stimulation with LPS (1 µg/ml) led to a marked increase in nitrite production in BV2 microglia 

(Figure 45 a). However, pre-treatment with artesunate (0.5-4 µM) caused a significant 

(p<0.05) reduction in nitrite production in LPS-activated BV2 cells (Figure 45 a).  

 

 

Figure 45: Artesunate inhibited iNOS mediated NO production in LPS-activated BV2 microglia.  
(A) Artesunate inhibited nitrite production in LPS-activated BV2 cells. Culture supernatants from 
24 hour stimulation were analysed for nitrite production. (B) Artesunate attenuated iNOS protein 

expression in LPS-activated BV2 cells. Whole cell extracts from 24 hour stimulation were analysed for 
iNOS protein expression. All values are expressed as mean ± SEM for three independent 

experiments. Data were analysed using one-way ANOVA for multiple comparison with post hoc 
Student Newman-Keuls test. *p<0.05, **p<0.01, ***p<0.001, in comparison with LPS control. θp<0.05, 

θθθp<0.001 in comparison with negative control (untreated cells). 
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At a concentration of 1 µM, 64 % nitrite was produced in the cells, while 57 % and 48 % 

nitrite production was measured in LPS-activated BV2 microglia cells treated with 2 and 

4 µM of artesunate, respectively. Investigations on iNOS protein levels showed that 

artesunate (0.5-2 µM) did not significantly inhibit iNOS protein expression (Figure 45 b). 

However, at 4 µM artesunate was shown to cause a significant decrease in iNOS protein 

expression, suggesting that artesunate exerted inhibitory actions on iNOS protein at high 

concentrations. 

5.1.2. Artesunate inhibited COX-2 and mPGES-1 mediated PGE2 production in LPS-

stimulated BV2 microglia cells 

Experiments showed that LPS stimulation significantly (p<0.001) increased PGE2 production 

(Figure 46 a). Pre-treatment with 0.5 and 1 µM artesunate did not inhibit PGE2 production 

significantly.  

 

 

Figure 46: Artesunate inhibited PGE2 production in LPS-stimulated BV2 microglia cells. 
BV2 cells were pre-treated with artesunate (0.5-4 μM) for 30 minutes and stimulated with LPS 

(1 μg/ml) for 24 hours. Cell supernatants were collected and PGE2 production quantified. Whole cell 
extracts were analysed for COX-2 and mPGES-1 protein expression (A) Artesunate (2 and 4 μM) 

inhibited PGE2 production in LPS-stimulated BV2 microglia cells. (B) Artesunate (2 and 4 µM) 
suppressed COX-2 protein expression in LPS-activated BV2 microglia cells. (C) Artesunate (2 and 

4 µM) suppressed mPGES-1 protein expression in LPS-activated microglia. All values are expressed 
as mean ± SEM for three independent experiments. Data were analysed using one-way ANOVA for 
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multiple comparison with post hoc Student Newman-Keuls test. *p<0.05, **p<0.01, ***p<0.001 in 
comparison with LPS control. θp<0.05, θθθp<0.001 in comparison with negative control (untreated 

cells). 

In addition, BV2 cells stimulated with LPS produced marked expression (p<0.001) of COX-2 

protein. Similar to the observations on PGE2 production, there was no significant reduction in 

COX-2 protein expression following pre-treatment with 0.5 and 1 µM artesunate. However, 

at 2 µM and 4 µM artesunate significantly suppressed COX-2 production (Figure 46 b).  

The effect of artesunate on mPGES-1 protein expression in LPS-activated BV2 cells was 

also investigated (Figure 46 c). At lower concentrations (0.5 and 1 µM), artesunate did not 

inhibit mPGES-1 protein expression. However, pre-treatment with artesunate (2 and 4 µM) 

produced significant inhibition of mPGES-1 protein expression (Figure 46 c). From the 

results obtained it can be inferred that artesunate (2-4 µM) suppressed PGE2 production in 

BV2 microglia cells via dual inhibition of COX-2 and mPGES-1 protein expression. 

5.1.3. Artesunate inhibited pro-inflammatory cytokines TNFα and IL-6 in 

LPS-stimulated BV2 microglia cells 

TNFα is a potent pro-inflammatory mediator produced during chronic inflammation, thus an 

attractive target for inhibiting neuroinflammation (McCoy & Tansey, 2008). Previous study on 

the anti-inflammatory properties of artesunate in experimental colitis by Yang et al (2012) 

showed that artesunate inhibited the production of pro-inflammatory cytokines including 

TNFα. In the present study, stimulation with LPS significantly increased TNFα production in 

LPS-activated BV2 cells (Figure 47 a). At a concentration of 0.5 µM, artesunate did not 

produce a significant effect on TNFα production in LPS-activated BV2 cells. However, at 1-

4 µM, artesunate significantly (p<0.05) suppressed TNFα production following LPS 

stimulation of BV2 cells (Figure 47 a). This observation is important as the presence of this 

potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage 

and disease pathogenesis.  

In addition, LPS stimulation of BV2 cells produced a marked increase in IL-6 production 

(Figure 47 b). At 0.5 µM, artesunate did not decrease IL-6 production significantly. 

Subsequent increase in concentrations to 1, 2 and 4 µM resulted in 60 %, 51.1 % and 33 % 

of IL-6 production (Figure 47 b), respectively; suggesting a concentration-dependent 

relationship. 
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Figure 47: Artesunate suppressed the production of pro-inflammatory cytokines in LPS-activated BV2 
cells. 

BV2 cells were stimulated with LPS (1 µg/ml) in the presence or absence of artesunate (0.5-4 µM) for 
24 hours. Culture supernatants were collected and analysed for TNFα and IL-6 production. (A) 

Artesunate (1-4 µM) inhibited TNFα production in LPS-activated BV2 microglia cells. (B) Artesunate 
(1-4 µM) suppressed IL-6 production in LPS-activated BV2 microglia cells. All values are expressed 
as mean ± SEM for three independent experiments. Data were analysed using one-way ANOVA for 

multiple comparison with post hoc Student Newman-Keuls test. *p<0.05, **p<0.01, ***p<0.001 in 
comparison with LPS control. θp<0.05, θθθp<0.001 in comparison with negative control (untreated 

cells). 

 

5.1.4. Artesunate inhibits NF-B signalling in LPS-activated BV-2 microglia cells by 

targeting IB/NF-B signalling 

Following the observation that artesunate inhibited iNOS/NO, COX-2/mPGES-1/PGE2 and 

pro-inflammatory cytokines (TNFα and IL-6) in LPS-activated BV2 microglia, its effect on NF-

B-mediated gene transcription was investigated. TNFα stimulation of NF-B-transfected 

HEK 293 cells resulted in significant activation of NF-B-driven luciferase expression 

(p<0.001). The result obtained also show that pre-treatment with artesunate (0.5-4 µM) 

significantly (p<0.001) inhibited NF-B-regulated luciferase gene expression (Figure 48). 
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Figure 48: Artesunate (0.5-4 µM) suppressed NF-B activity in HEK293 cells transfected with NF-B 
luciferase construct.  

NF-B transfected HEK-293 cells were stimulated with TNFα (1 ng/ml) in the absence or presence of 

artesunate (0.5-4 µM) for 6 hours. Luminescence measurement was used as a measure of NF-B 
activity. All values are expressed as mean ± SEM for at least 3 independent experiments. Data were 
analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 

*p<0.05, ***p<0.001 in comparison with TNFα control. 

Following an exposure to an inflammatory stimulus (e.g. LPS), phosphorylation and 

degradation of IB (an inhibitory protein which sequester inactive NF-B complexes in the 

cytoplasm) occur, releasing NF-B subunits. The inhibitory actions of artesunate on 

phosphorylation and degradation of IB-α was therefore investigated. Following LPS 

activation, there was a marked increase in the phosphorylation of IB-α (Figure 49 a). Pre-

treatment with artesunate (0.5-4 µM) caused a significant and concentration-dependent 

inhibition of phospho-IB-α (Figure 49 a). Pre-treatment with artesunate also inhibited IB-α 

degradation induced with stimulation of BV2 microglia with LPS. Interestingly, the latter 

effect was not concentration-dependent and significant inhibition of degradation was 

observed at 0.5, 1 and 4 µM (Figure 49 a). 

The phosphorylation and degradation of IB is followed by translocation of p65NF-B 

subunit to the nucleus. Experiments on nuclear protein expression of p65NF-B show that 

pre-treatment with artesunate at 0.5 µM did not affect nuclear levels of phospho-p65NF-B. 

However, at 1-4 µM, pre-treatment with artesunate inhibited phospho-p65NF-B protein 

expression in a concentration-dependent fashion (Figure 49 b). 
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Figure 49: Artesunate inhibited NF-B signalling in LPS-activated BV2 cells by interfering with IB/NF-

B.  

Whole cell extracts from 1 hour stimulation were analysed for IB-α. Nuclear extracts were analysed 

for p65NF-B phosphorylation and DNA binding. (A) Artesunate suppressed phosphorylation and 

degradation of IB-α in LPS-activated BV2 microglia cells. (B) Artesunate (1-4 µM) inhibited p65NF-

B nuclear translocation in LPS-activated BV2 cells. (C) Artesunate inhibited p65NF-B DNA binding 
in LPS-activated BV2 cells. All values are expressed as mean ± SEM for at least 3 independent 
experiments. Data were analysed using one-way ANOVA for multiple comparisons with post-hoc 

Student Newman-Keuls test. *p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp<0.001 
in comparison with negative control (untreated cells). 
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Following translocation to the nucleus, p65NF-B subunit binds to the DNA and regulates 

the transcription of various genes regulating inflammatory mediators. Figure 49 c shows that 

artesunate inhibited the binding of p65NF-B to the DNA in LPS-activated BV2 microglia 

cells. 

To further elucidate the effect of artesunate on NF-B signalling, its effect on IKK 

phosphorylation in LPS-activated BV2 cells was evaluated. Results obtained show that there 

was no significant inhibition of IKK phosphorylation by artesunate (Figure 50). 

Taken together the results obtained, it can be inferred that artesunate may have inhibited 

iNOS/NO, COX-2/mPGES-1/PGE2 and pro-inflammatory cytokines by inhibiting IB/NF- B 

signalling in LPS-activated BV2 cells.  

 

Figure 50: Artesunate did not inhibit phosphorylation of IKK in LPS-activated BV2 cells. 
BV2 microglia cells were stimulated with LPS (1 µg/ml) for 30 minutes in the absence or presence of 

artesunate (0.5-4 µM). Whole cell extracts were collected and analysed for p-IKKα and total IKK 
protein expressions using western blot. All values are expressed as mean ± SEM for at least 3 

independent experiments. Data were analysed using one-way ANOVA for multiple comparisons with 
post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 in comparison with LPS control. θp<0.05, 

θθθp<0.001 in comparison with negative control (untreated cells). 

 

5.1.6. Anti-neuroinflammatory activity of artesunate is mediated partly via 

suppression of phosphorylation of p38 signalling. 

p38MAPK cascade has been shown to contribute to the transcriptional and post-translational 

regulation of iNOS and TNFα in LPS activated glial cells (Bhat, et al., 1998). Artesunate has 

been shown in this research to inhibit iNOS/NO, pro-inflammatory cytokines TNFα and IL-6. 

Therefore, its effect on phospho-p38MAPK protein expression was investigated. Results 

obtained showed that there was a marked increase in the expression of phopho-p38 protein 

in BV2 cells following stimulation with LPS (1 µg/ml) (Figure 51). The result also shows that 
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pre-treatment with artesunate (0.5-4 µM) significantly (p<0.05) inhibited protein expression of 

phospho-p38 (Figure 51). 

 

Figure 51: Artesunate inhibited phospho-p38 protein expression in LPS-activated BV2 microglia cells. 
BV2 microglia cells were pre-treated with artesunate (0.5-4 µM) for 30 minutes and then activated by 
LPS (1 µg/ml) for 1 hour. Whole cell extracts were obtained and analysed for phospho-p38 and total 

p38 protein with anti-phospho-p38 and anti-total p38 antibody using western blot. All values are 
expressed as mean ± SEM for 3 independent experiments. Data were analysed using one-way 
ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, **p<0.01, 

***p<0.001 in comparison with LPS control. θp<0.05, θθθp<0.001 in comparison with negative control 
(untreated cells). 

The activation of the MKK3/6 represents one distinct pathway through which p38MAPK is 

activated. Hence, the effect of artesunate on phospho-MKK3/6 protein was also investigated. 

Figure 5.1.6 a shows that there was a marked increase (p<0.001) in protein expression of 

phospho-MKK3/6 in BV2 cells stimulated with LPS (1 µg/ml). At 0.5 and 1 µM artesunate did 

not show any significant inhibition of phospho-MKK3/6 protein expression. However, at 2µM 

and 4µM artesunate significantly inhibited phospho-MKK3/6 (Figure 52 a). 

Following the phosphorylation of p38MAPK, p38MAPK activate transcription factors by 

acting on MAPKAPK2. The effect of artesunate (0.5-4 µM) on phospho-MAPKAPK2 was 

investigated in LPS-activated BV2 microglia. Figure 52 b shows that phospho-MAPKAPK2 

protein expression was significantly increased following stimulation with LPS (1 µg/ml). Pre-

treatment with 1, 2 and 4 µM artesunate resulted in 69.3 %, 55.2 % and 41.3 % phospho-

MAPKAPK2 respectively when compared with LPS control (Figure 52 b). 

From the results obtained from the study of the effect of artesunate (0.5-4 µM) on p38MAPK 

signalling it can be inferred that artesunate suppressed p38MAPK signalling through 

inhibition of MKK3/6 phosphorylation. 
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Figure 52: Artesunate inhibited phospho-MKK3/6 and phospho-MAPKAPK2 in LPS-activated BV2 
microglia cells.  

(A) Artesunate inhibited phospho-MKK3/6 protein expression in LPS-activated BV2 microglia cells. (B) 
Artesunate suppressed phospho-MAPKAP2 protein expression in LPS-activated BV2 microglia cells. 
All values are expressed as mean ± SEM for 3 independent experiments. Data were analysed using 

one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. *p<0.05, 
**p<0.01, ***p<0.001 in comparison with LPS control. θp<0.05, θθθp<0.001 in comparison with negative 

control (untreated cells). 

 

5.2. Artesunate activated Nrf2/HO-1 antioxidant protective system in BV2 microglia. 

First, the effect of artesunate on HO-1 protein expression was investigated. In control cells, 

basal level of HO-1 expression was observed. However, treatment with artesunate (4 µM) 

significantly (p<0.001) increased the expression of HO-1 protein in BV2 microglia cells, when 

compared with untreated control (Figure 53). 
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Figure 53: Artesunate (4 µM) activated HO-1 in BV2 microglia cells. 
BV2 cells were treated with artesunate (0.5-4 µM) for 24 hours. Whole cell extracts were collected 

and analysed for HO-1 protein expression using western blotting. All values are expressed as mean ± 
SEM for at least 3 independent experiments. Data were analysed using one-way ANOVA for multiple 

comparisons with post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 in comparison with 
control. 

 

Next, the effect of the artesunate (0.5-4 µM) on ARE activation was investigated by treating 

ARE transfected HEK 293 cells with artesunate (0.5-4 µM) for 8 hours. Results obtained 

show that artesunate increased ARE luciferase activity in a concentration-dependent fashion 

(Figure 54 a). This result suggests that artesunate may be able to activate Nrf2 antioxidant 

pathway. ARE genes are activated by the transcription factor Nrf2. This result also suggests 

that artesunate may have effects on Nrf2 activity. 

Following the observation that artesunate activated ARE luciferase activity in transfected 

HEK 293 cells, the effect of artesunate (4 µM) on nuclear Nrf2 protein expression was 

investigated in BV2 cells for 15, 30, 60, 120 and 180 minutes. Experimental analysis of 

nuclear extracts obtained showed that artesunate (4 µM) activated Nrf2 after 15, 30, 120 and 

180 minutes of treatment (Figure 54 b). However, the most significant activation was 

observed at 180 minutes. 
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 Figure 54: Artesunate activated ARE luciferase activity in HEK cells and Nrf2 protein expression in 
BV2 microglia cells.  

(A) Artesunate activated ARE luciferase activity in HEK 293 cells transfected with ARE construct. (B) 
Artesunate activated Nrf2 in BV2 cells. BV2 cells were treated with artesunate (4 µM) for 15, 30, 60, 

120 and 180 minutes. Nuclear extracts were analysed for Nrf2 protein expression using western 
blotting. All values are expressed as mean ± SEM for at least 3 independent experiments. Data were 
analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 

*p<0.05, ***p<0.001 in comparison with control 

 

5.3.1. Inhibition of nitric oxide production in LPS-activated BV2 cells by artesunate is 

independent of the Nrf2 signalling pathways. 

Nrf2-silenced BV2 cells were pre-treated with artesunate (4 μM) for 30 minutes prior to LPS 

stimulation for 24 hours. Subsequently, nitrite production was investigated. Results obtained 

show that Nrf2 silencing in BV2 microglia significantly (p<0.001) enhanced nitrite production 

following LPS stimulation (Figure 55). Pre-treatment with artesunate (4 μM) did not reverse 

the inhibitory effect of artesunate on nitrite production in Nrf2 knockout cells, suggesting that 

the inhibitory effects of artesunate on nitrite production was independent of Nrf2 activity. 
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Figure 55: Inhibition of NO production in LPS-activated BV2 cells by artesunate is independent of Nrf2 
activity.  

BV2 cells transfected with Nrf2 siRNA were stimulated with LPS for 24 hours following pre-treatment 
with artesunate (4 µM). Subsequently, NO production was measured. All values are expressed as 

mean ± SEM for at least 3 independent experiments. Data were analysed using one-way ANOVA for 
multiple comparisons with post-hoc Student Newman-Keuls test. θp<0.05, θθθp<0.001 in comparison 

with –siNrf2 LPS control. 

 

5.3.2. Inhibition of TNFα and IL-6 production in LPS-stimulated BV2 cells by 

artesunate is dependent on Nrf2. 

Stimulation of Nrf2-silenced BV2 cells with LPS enhanced TNFα production (Figure 56 a). 

Pre-treatment with artesunate (4 µM) significantly (p<0.001) reversed the inhibitory actions 

of artesunate following LPS stimulation.  

The effect of Nrf2 silencing on the inhibitory actions of artesunate on IL-6 production was 

also investigated. Pre-treatment with artesunate (4 µM) significantly (p<0.001) reversed the 

inhibitory actions of artesunate on IL-6 production in Nrf2 knockout cells (Figure 56 b). 

It therefore appears that the inhibitory effects of artesunate on TNFα and IL-6 production in 

LPS-activated BV2 cells were dependent on the Nrf2 activity. 



127| P a g e  
 

 

 

 

Figure 56: Inhibition of pro-inflammatory cytokines TNFα and IL-6 in LPS activated BV2 microglia cells 
by artesunate is dependent on Nrf2 activity.  

BV2 cells were transfected with Nrf2 siRNA, treated with artesunate (4 µM) for 30 minutes and 
stimulated with LPS (1 µg/ml) for 24 hours. Thereafter, culture supernatants were analysed using 

ELISA. (A) Inhibitory effect of artesunate on TNFα production in LPS-stimulated BV2 cell is dependent 
on Nrf2 activity. (B) Inhibitory action of artesunate on LPS-activated BV2 cell is dependent on Nrf2 

activity. All values are expressed as mean ± SEM for at least 3 independent experiments. Data were 
analysed using one-way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 
θp<0.05, θθθp< 0.001 in comparison with -siNrf2 LPS control. #p<0.05, ###p<0.001 in comparison with -

siNrf2 4 µM artesunate treatment. 

 

5.3.3. Inhibition of PGE2 production in LPS-activated BV2 cells by artesunate is 

dependent on Nrf2 activity. 

Nrf2-silenced BV2 cells were stimulated with LPS (1 µg/ml) for 24 hours following pre-

treatment with artesunate. Culture supernatants were collected and analysed for PGE2 

production. Figure 57 show that Nrf2 knockout significantly (p<0.001) enhanced PGE2 

production following LPS stimulation. However, pre-treatment of Nrf2 knockout cells with 

artesunate (4 µM) significantly reversed the inhibitory actions of artesunate on PGE2 
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production; suggesting that the inhibitory actions of artesunate on PGE2 production is 

dependent on Nrf2 activity.  

 

Figure 57: Inhibition of PGE2 production by artesunate in LPS-activated BV2 cells is dependent on 
Nrf2 activity.  

Nrf2 knockout BV2 microglia cells were stimulated with LPS (1 μg/ml) for 24 hours following pre-
treatment with artesunate (4 µM). Thereafter, culture supernatants were collected and analysed for 

PGE2 production using PGE2 EIA Assay. All values are expressed as mean ± SEM for at least 3 
independent experiments. Data were analysed using one-way ANOVA for multiple comparisons with 

post-hoc Student Newman-Keuls test. *p<0.05, ***p<0.001 in comparison with negative control. 
θp<0.05, θθθp< 0.001 in comparison with -siNrf2 LPS control. #p<0.05, ###p<0.001 in comparison with -

siNrf2 4 μM artesunate treatment. 

 

5.4. Artesunate (0.5-4 µM) did not affect cell viability 

To ascertain that artesunate (0.5-4 µM) did not affect cell viability, BV2 cells were stimulated 

for 24 hours in the presence or absence of artesunate (0.5-4 µM). Subsequently, MTT assay 

was carried out on the cells. Results obtained (Figure 58) show that artesunate did not affect 

cell viability in BV2 microglia cells. 
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Figure 58: Artesunate did not affect cell viability of BV2 microglia cells.  

BV2 cells were pre-treated with artesunate (0.5-4 µM) for 30 minutes and subsequently stimulated 
with LPS (1 µg/ml) for 24 hours. Thereafter, MTT viability assay was performed. All values are 

expressed as mean ± SEM for at least 3 independent experiments. Data were analysed using one-
way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 
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5.5. Discussion 

Concentrations used for study was determined following MTT assay. Result obtained 

showed that artesunate did not affect cell viability. Therefore, the possible anti-

neuroinflammatory effects of artesunate were investigated. 

Elevated levels of NO production within the CNS are associated with the pathogenesis of 

neuroinflammatory diseases. Glial cells express inducible iNOS and produce a high level of 

NO in response to a pro-inflammatory stimulus suggesting the need to inhibit iNOS/NO 

during neuroinflammation. In this study artesunate inhibited NO production in LPS-activated 

BV2 microglia as well as iNOS protein. In a study by Konkimalla et al (2008), artesunate was 

reported to inhibit nitric oxide-related signalling pathway in RAW 264.7 mouse macrophages. 

In another study by Xu et al (2007), artesunate also inhibited NO/iNOS in human rheumatoid 

arthritis fibroblast-like synoviocytes following TNFα stimulation. In a closely related study by 

Lee et al (2012), artesunate was also reported to inhibit iNOS mediated nitrite production. 

These reports are consistent with the outcome of this study, which showed that artesunate 

suppressed NO production via inhibition of iNOS protein expression.  

Artesunate has also been shown to inhibit PGE2 production in LPS-activated BV2 microglia 

cells. In addition, artesunate inhibited COX-2 and mPGES-1 protein levels in LPS activated 

BV2 cells. Recent studies on LPS/IFNγ activated BV2 cells have also shown that artesunate 

inhibited PGE2/COX-2 (Okorji & Olajide, 2013). Lee et al (2012) also reported that 

artesunate inhibited COX-2 in LPS activated BV2 cells. It therefore follows that in LPS-

activated microglia, artesunate blocks PGE2 production via dual inhibition of COX-2 and 

mPGES-1 protein expression. It is important to highlight that this is the first time artesunate 

is shown to inhibit COX-2/mPGES1 mediated PGE2 production in LPS activated BV2 

microglia. 

Pro-inflammatory cytokines are known to play a crucial role in neuronal cell death following 

excessive production by activated microglia cells. In this study, experiments on pro-

inflammatory cytokines demonstrate that artesunate significantly reduced the increased 

production of TNFα and IL-6 following stimulation of BV2 microglia with LPS. Previous study 

on the anti-inflammatory properties of artesunate in experimental colitis by Yang et al (2012) 

shows that artesunate inhibited the production of pro-inflammatory cytokines. Studies by Lee 

et al (2012) showed that artesunate inhibited another pro-inflammatory cytokine IL-1β. 

These reports are consistent with the outcome of this study, which showed that artesunate 

may possess inhibitory actions against pro-inflammatory mediators in neuroinflammation  
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To further understand the molecular mechanism (s) involved in the inhibition of NO/iNOS, 

PGE2/COX-2/mPGES-1 and the pro-inflammatory cytokines (TNFα and IL-6), the effect of 

artesunate on the NF-B signalling was investigated. Artesunate inhibited NF-B luciferase 

activity in HEK 293 cells suggesting that artesunate may possess inhibitory effects on NF-B 

signalling. Further experiments showed that artesunate produced inhibitory actions on the 

phosphorylation and degradation of IB. Recent study by Okorji and Olajide (2013) also 

showed that artesunate inhibited IB phosphorylation in LPS/IFNγ activated BV2 microglia 

cells. Artesunate also inhibited nuclear translocation of NF-B subunit. It is therefore 

proposed that artesunate might be inhibiting neuroinflammation by targeting NF-B 

signalling. 

p38 MAPKs have been shown to be crucial signal transduction pathways that contribute to 

glia-induced neuronal death. It has also been suggested to play an important role in the 

expression and activity of pro-inflammatory cytokines. Therefore, the effect of artesunate on 

p38MAPK signalling in LPS-activated BV2 cells was explored. Results obtained show that 

artesunate inhibited p38MAPK signalling by blocking the phosphorylation of MKK3/6, a 

kinase that regulates p38MAPK phosphorylation. Artesunate also inhibited the 

phosphorylation of p38MAPK substrate, MAPKAPK2. The results obtained show that the 

inhibition of p38MAPK signalling by artesunate is through the suppression of MKK3/6. It 

therefore suggests that artesunate exerts its anti-neuroinflammatory effects partly through 

inhibition of p38MAPK signalling. This is the first time artesunate is shown to block 

p38MAPK signalling following LPS activation of BV2 microglia. 

Further to the observations that artesunate inhibits neuroinflammation in BV2 cells by 

interfering with NF-B and p38MAPK signalling, its effect on Nrf2 mediated HO-1 activity 

was investigated. Artesunate activated HO-1 expression in BV2 microglia cells. In addition, 

artesunate activated Nrf2 protein expression, suggesting that artesunate activate Nrf2 

mediated HO-1 production. Experimental investigations on ARE activity, suggests that 

artesunate activates the general activity of ARE. Previously, Lee et al. (2012) showed that 

artesunate activates Nrf2-ARE system. This report confirms the findings of this study that 

artesunate activates Nrf2 mediated HO-1 production and ARE activity. 

Previous studies have suggested that the activation of Nrf2 by compounds is correlated with 

the inhibition of iNOS and COX-2 directly (Baird & Dinkova-Kostova, 2011). Therefore the 

effect of Nrf2 knockout on the inhibitory actions of artesunate on pro-inflammatory mediators 

was explored. Inhibition of nitric oxide in LPS-activated BV2 cells was shown to be 

independent of Nrf2 activity. However, the inhibitory actions of artesunate on TNFα, IL-6 and 

PGE2 production in LPS-activated BV2 cells are dependent on Nrf2 activity. Therefore, the 
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inhibitory actions of artesunate on pro-inflammatory mediators may be partly dependent on 

Nrf2 activity. It is important to highlight that this is the first time artesunate inhibitory actions 

against TNFα, IL-6 and PGE2 is dependent on Nrf2 activity. 

In summary, artesunate has been shown in these experiments to exert anti-

neuroinflammatory properties by interfering with NF-B and p38MAPK signalling. Artesunate 

also activate Nrf2 mediated HO-1 expression in BV2 microglia cells. 
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CHAPTER 6 

GENERAL DISCUSSION 
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6. General Discussion  

6.1. Discussion 

Neuroinflammation has been implicated in the initiation and/or progression of some 

neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, 

Amyotrophic lateral sclerosis and Multiple sclerosis. Previously, artemisinin a sesquiterpene 

lactone and its derivatives artemether and artesunate have been reported to have promising 

anti-inflammatory activity in various cell types and models of inflammation (Ho et al., 2014; 

Pahl, 1999, Wu, 2011). However, a detailed investigation of these compounds in LPS-

induced neuroinflammation in BV2 microglia cells had not been conducted. In this study, 

artemisinin and its derivatives artemether and artesunate have been studied independently 

of each other. 

Aberrant iNOS induction influences the pathophysiology of several neurological diseases, 

leading to detrimental consequences. For example, toxicity in neurological diseases can 

occur through the overproduction of NO, which leads to the production of toxic reactive 

nitrogen species (RNS), especially ONOO- (Ghasemi & Fatemi, 2014). In addition, iNOS-

derived NO regulates prostaglandin formation by COX-2 through the protein cysteine 

residues (S-nitrosylation) (Ghasemi & Fatemi, 2014; Kim, 2011; Kim et al., 2005). These 

suggest the importance of modulation of NO/iNOS production in chronic neuroinflammation.  

In this study, it has been demonstrated that artemisinin, artemether and artesunate inhibit 

iNOS mediated NO production in LPS-activated BV2 microglia. Previous studies have 

reported the inhibition of NO/iNOS production by these compounds. In a study on RAW 

264.7 macrophages, an artemisinin derivative SM905 was reported to profoundly inhibit NO 

production following activation with LPS (Wang et al., 2009). In another study, artemisinin 

was reported to inhibit NO/iNOS production in LPS activated primary microglia (Zhu et al., 

2012). 

Pro-inflammatory cytokines have been reported to play vital roles in the initiation and/or 

progression of various CNS neuroinflammatory conditions. Excessive production of these 

pro-inflammatory cytokines exacerbates deleterious effects in the CNS, which subsequently 

result in neuronal death and chronicity of the disease. TNFα produced during 

neuroinflammation plays a central role in initiating and regulating cytokine cascade during an 

inflammatory response (Rubio-Perez & Morillas-Ruiz, 2012). In addition, its production 

during neuroinflammation leads to toxicity in neurons (Olmos & Llado, 2014). IL-6 production 

during neuroinflammation has also been reported to play a role in neurodegeneration and 

cognitive impairment (Rojo et al., 2008). Hence, modulation of these cytokines proves to be 

a major contributing factor in suppressing neuroinflammation. Inhibition of pro-inflammatory 
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cytokines in microglia has been shown to attenuate the severity of Alzheimer’s disease, 

Parkinson’s disease, trauma, multiple sclerosis and cerebral ischemia (Koning et al., 2007; 

Krause & Muller, 2010; Qian et al., 2010). 

Artemisinin, artemether and artesunate blocked the production of the pro-inflammatory 

cytokines; TNFα and IL-6 production in LPS activated BV2 cells. Previously, artemisinin has 

been shown to suppress TNFα and IL-6 production upon stimulation with LPS in primary 

microglia cells (Zhu et al., 2012), thus confirming the results from this research Artesunate 

has also been reported to inhibit TNFα-induced production of pro-inflammatory cytokines in 

human rheumatoid arthritis fibroblast-like synoviocytes (Xu et al., 2007). The outcome of 

these previous studies and the current research seem to suggest that artemisinin and 

derivatives are able to inhibit production of pro-inflammatory cytokines in various cells and in 

diverse inflammatory responses. 

This study has shown that artemisinin, artemether and artesunate reduced PGE2 production 

in LPS-activated BV2 cells. PGE2 produced during neuroinflammation act on EP receptors 

expressed in the microglia and neurons. Activation of microglial EP2 receptors enhances 

neurotoxic activities (Schlachetzki et al., 2010). Therefore, inhibition of PGE2 generated 

during neuroinflammation is important. Previously, artesunate has been reported to exert an 

anti-immunosuppressive effect in part on cervical cancer by inhibiting PGE2 production 

(Zhang et al., 2014). Artemisinin has also been shown to inhibit PGE2 production in TNFα 

induced vascular smooth muscle cells (Cao et al., 2014). These studies confirm the 

inhibitory effects of artemisinin, artemether and artesunate on PGE2 production following 

stimulation.  

Artemisinin, artemether and artesunate also inhibited COX-2 protein expression. This infers 

that the compounds inhibit PGE2 production through inhibition of COX-2 in LPS activated 

microglia cells. COX-2 enzyme catalyses the rate limiting step in the formation of 

prostaglandins from arachidonic acid. Therefore, its regulation is crucial in the control of 

prostaglandin synthesis. Previous studies have shown that artesunate inhibited COX-2 

protein expression in activated BV2 microglia cells (Okorji & Olajide, 2014). The study 

reported by Okorji & Olajide also suggested that artesunate inhibited PGE2 production 

through inhibition of COX-2.  

mPGES1 is an inducible terminal enzyme for PGE2 biosynthesis (de Oliveira et al., 2008; 

Kudo & Murakami, 2005). In addition mPGES-1 is functionally coupled with COX-2 (de 

Oliveira et al., 2008; Lazarus et al., 2002). In this research, artemisinin, artemether and 

artesunate were shown to inhibit mPGES-1 protein expression. This suggests that these 
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compounds inhibit PGE2 production via dual inhibition of COX-2 and mPGES-1 in LPS 

activated BV2 cells.  

NF-B is a ubiquitous transcription factor which regulates the expression of many 

inflammation-related genes, including TNFα, IL-6, COX-2 and iNOS. The blockage of NF-B 

transcriptional activity can therefore suppress the expression of these mediators (Li & 

Verma, 2002; Olajide et al., 2007; Olajide et al., 2014). Results from this study have 

demonstrated that artemisinin; artemether and artesunate suppressed TNFα, IL-6, nitric 

oxide, iNOS and COX-2. Consequently, it was decided to investigate whether the inhibitory 

actions of the compounds were due to interference with NF-B signalling. 

In response to an inflammatory stimulus, IB is phosphorylated and degraded; p65NF-B is 

then released and subsequently translocate to the nucleus (Kanaarek & Ben-Neriah, 2012). 

Artemisinin, artemether and artesunate significantly inhibited the phosphorylation and 

degradation of IB in LPS-activated BV2 microglia cells. Artemisinin has been reported to 

inhibit IB phosphorylation and degradation in PMA-induced THP-1 monocytes (Wang et al., 

2011). Recent study by Okorji and Olajide (2013) also showed that artesunate inhibited IB 

phosphorylation in LPS/IFNγ activated BV2 microglia cells. Wang et al. (2009) also reported 

that a derivative of artemisinin, SM905, inhibited IB phosphorylation and degradation in 

LPS activated macrophages. These reports are consistent with the outcome of the current 

study, and suggest that these compounds are potent inhibitors of IB phosphorylation and 

degradation. Artemisinin is a sesquiterpene lactone. Several reports have demonstrated that 

this group of natural products are potent inhibitors IB phosphorylation and degradation in 

several cell types (Zingarelli et al., 2002; Siedle et al. 2004; Shin et al., 2005; Nam et al., 

2015). Specifically, Hehner et al. (1998) have suggested that the isoprenoide ring system 

and a lactone ring are the two structural features of sesquiterpene lactones, which confer 

inhibitory activity on NF-B activation pathways. These evidences might explain the 

observed effects of artemisinin and its derivatives on IB phosphorylation and degradation 

following LPS stimulation in BV2 microglia. 

Degradation of IB is initiated through phosphorylation by IB kinase (IKK) complex. 

However, artemisinin, artemether and artesunate did not inhibit IKK phosphorylation in LPS-

activated BV2 microglia cells. This suggests these compounds might be acting directly by 

interfering with IB or there might be an involvement of another signalling node(s) that might 

be involved in the inhibition of IB phosphorylation and degradation. For example, protein 

kinase C (PKC) and Ca2+–dependent signal transduction pathways can regulate IB 

phosphorylation (Steffan et al., 1995). Steffan et al (1995) showed that Ca2+-dependent 

pathways, including the phosphatase calcineurin, participate in the regulation of NF-B in a 
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cell specific fashion and synergizes with PKC-dependent and independent pathways at the 

level of IBα phosphorylation and degradation.  

Phosphorylation and degradation of IB results in nuclear translocation of p65NF-B 

subunits, followed by binding to the DNA, and regulation of transcriptional activity of pro-

inflammatory mediators including COX-2, iNOS and pro-inflammatory cytokines. This study 

shows that artemisinin, artemether and artesunate inhibited nuclear translocation of p65 

NF-B. Artemisinin, artemether and artesunate also inhibit DNA binding. It appears that 

artemisinin, artemether and artesunate interfere with NF-B signalling by inhibiting IB 

phosphorylation and degradation, as well as NF-B binding in LPS activated BV2 cells. 

Studies by Xu et al. (2007) have suggested that artemisinin and its derivatives may exert 

anti-inflammatory and immunoregulatory effects by inhibiting NF-B activation. In addition, 

Habtemariam (2000) reported that natural products with anti-inflammatory actions inhibit 

inflammation by interfering with NF-B signalling and subsequent inhibition of transcriptional 

activation of TNF gene. In RAW 264.7 macrophages, an artemisinin derivative, SM905, 

inhibited pro-inflammatory NO and pro-inflammatory cytokine production in part by 

suppressing nuclear translocation of NF-B subunit (Wang et al., 2009). Another study 

reported that artemisinin inhibited neuroinflammation in APPswe/PS1dE9 transgenic mice, 

which was attributable in part to inhibition of NF-B by inhibiting nuclear p65NF-B 

translocation (Shi et al., 2013). Shi et al (2013) also showed that artemisinin inhibited IB 

phosphorylation in APPswe/PS1dE9 transgenic mice. In addition, artesunate has been 

shown to inhibit PGE2 production in LPS/IFNγ-activated BV2 microglia in part via inhibition of 

NF-B (Okorji & Olajide, 2014). Consistent with the results from this research, in primary 

microglia, artemisinin was reported to inhibit NF-B translocation and DNA binding following 

activation with LPS. These evidences confirm that artemisinin, artemether and artesunate 

inhibit neuroinflammation through interference with NF-B signalling.  

In microglia-driven neuroinflammation, p38MAPK cascade has been shown to contribute to 

the transcriptional and post-translational regulation of iNOS and TNFα gene expression in 

LPS activated glial cells (Bhat et al., 1998). Furthermore, the p38MAPK is known to regulate 

pro-inflammatory cytokine production in degenerative diseases of the CNS (Bachstetter et 

al., 2011). In primary rat and human microglia, LPS stimulated p38MAPK signalling 

mediated production of NO and TNFα (Lee et al., 2010; Munoz & Ammit, 2010). Therefore, 

the effects of artemisinin, artemether and artesunate on p38MAPK signalling were 

investigated in LPS-activated BV2 microglia. Results show that the three compounds 

prevented phosphorylation of p38MAPK following activation of BV2 cells with LPS.  
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LPS stimulation of microglia is known to activate p38MAPK-signalling pathway, resulting in 

phosphorylation of p38 by MKK3/6. Interestingly, artemisinin, artemether and artesunate 

blocked phosphorylation of MKK3/6, suggesting that these compounds affect p38 activity by 

targeting these upstream kinases.  

Activated p38 is known to further activate transcription factors by acting on its substrate, 

MAPKAPK2 (Bachstetter & Eldik, 2010). Therefore in order to gain a better understanding of 

the mechanisms involved in the targeting of p38MAPK signalling by the compounds, they 

were investigated for possible inhibitory effects on MAPKAPK2 phosphorylation following 

LPS stimulation in BV2 microglia. Artemisinin, artesunate and artemether showed a similar 

trend in suppressing the increased phospho-MAPKAPK2 protein expression induced by LPS 

in BV2 microglia. These observations suggest that the three compounds target p38MAPK 

signalling by blocking MKK3/6 phosphorylation. This outcome provides the first evidence 

demonstrating that artemisinin and its derivatives artemether and artesunate inhibited 

neuroinflammation in LPS-activated BV2 microglia cells by targeting p38 signalling.  

Nrf2 activity has been reported to be relevant in down-regulation of neuroinflammation by 

restoring homeostasis (Innamorato et al., 2008; Rojo et al., 2014). Upon activation, Nrf2 

binds to ARE sites in promoter regions of genes encoding phase II detoxifying and 

antioxidant enzymes, such as HO-1. HO-1 activity is implicated in the modulation of 

inflammatory responses. Recent studies have shown that up-regulation of HO-1 blocks the 

expression of iNOS and COX-2, consequently suppressing NO and PGE2 production 

(Dilshara et al., 2014; Surh et al., 2009). In addition, pharmacological induction of HO-1 has 

been shown to suppress inflammation-related brain injuries (Lee et al., 2012; Pamplona et 

al., 2007). Consequently, it was sought to determine if artemisinin, artesunate and 

artemether could modulate HO-1 expression in BV2 microglia. Interestingly, all the 

compounds showed a similar profile by causing an increase in the expression of HO-1, 

suggesting that activation of this enzyme might contribute to their anti-neuroinflammatory 

activity. 

Nrf2 tightly controls HO-1 expression via direct binding of Nrf2 to AREs. Consequently, the 

effects of artemisinin, artemether and artesunate were investigated in BV2 microglia cell. 

These compounds activated HO-1 protein expression in BV2 cells. Consistent with some of 

the results of this study, Lee et al (2012) showed that artesunate increased the levels of HO-

1 protein in BV2 microglia cells.  

Nrf2 is a pivotal regulator of endogenous defence systems that function via the activation of 

a set of protective genes, including HO-1. Therefore, the effects of artemisinin, artemether 

and artesunate on nuclear expression of Nrf2 were investigated in BV2 microglia cells. The 
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compounds produced a consistent activation of nuclear Nrf2. It is important to note that each 

of the compound activated Nrf2 at different time points. For example, artemisinin activated 

Nrf2 at 15 minutes and 120 minutes. There is no known explanation as to why this might be 

so. However, it is known that different compounds activate Nrf2 at different time points. For 

example, resveratrol has been reported to activate Nrf2 at 3, 6, 9 and 12 hours in PC12 cells 

(Chen et al., 2005). In an earlier study by Lee et al. (2012), artesunate was shown to activate 

nuclear Nrf2 protein expression at 24 hours. These reports suggest that compounds can 

activate Nrf2 at different time points. Although the reasons why this might be so is uncertain, 

activation of Nrf2 provides an effective approach to activate the M2 phenotype of the 

microglia which helps in restoration of homeostasis. Upon translocation of Nrf2 to the 

nucleus, Nrf2 forms a heterodimer with small Maf proteins, recognises and then binds to 

ARE promoter site. Reporter gene assay showed that artemisinin, artemether and 

artesunate induced ARE activation.  

The induction of Nrf2 by compounds of various chemical classes is directly correlated to the 

inhibition of COX-2 and iNOS expression (Baird & Dinkova-Kostova, 2011). In addition, Nrf2 

activity has been suggested to modulate the activity of NF-B. Having established that 

artemisinin, artemether and artesunate produced activation of Nrf2/HO-1 system, as well as 

the ARE reporter, it was thought to confirm whether some of the anti-neuroinflammatory 

effects of these compounds were dependent on Nrf2. This hypothesis was tested in Nrf2 

knockout BV2 microglia stimulated with LPS after treatment with the compounds. Analyses 

of samples from these cells showed that inhibition of nitrite production by the three 

compounds at the highest concentrations studies was unaffected by silencing the Nrf2 gene. 

Further investigations on the effect of Nrf2 knockout on nitrite production at lower 

concentrations of the compounds were explored and a similar trend was observed. However, 

this investigation was not done up to three times to ensure statistical significance. Therefore, 

the outcomes have not been included in the thesis. The results obtained from the 

investigations on the effect of artemisinin and its derivatives on nitrite production suggest 

that the effect of all compounds on nitrite production were independent on Nrf2. This 

observation suggests that other pathway(s) are involved in the nitrite production. Further 

investigation (s) to determine other pathway (s), which might be influencing this observation, 

should be carried out.  

Interestingly, inhibition of TNFα, IL-6 and PGE2 were reversed to varying degrees by the 

three compounds in Nrf2-silenced BV2 cells stimulated with LPS. This was the first 

observation demonstrating a relationship between Nrf2 activation and inhibition of TNFα, IL-

6 and PGE2 by artemisinin, artemether and artesunate in the microglia. Recent studies on 

BV2 microglia cells suggest that Nrf2 has an inverse effect on NF-B (Cuadrado et al., 
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2014). This probably explains the reversal in the inhibitory effect of artemisinin, artemether 

and artesunate on PGE2, TNFα and IL-6 production in Nrf2-silenced BV2 microglia cells 

activated with LPS. It however remains unclear why the effects of these compounds on 

nitrite production were unaffected in Nrf2-silenced cells. The proposed actions of artemisinin, 

artemether and artesunate on neuroinflammation in BV2 microglia are shown in figure 59. 

It is also important to highlight that these compounds did not affect cell viability and hence 

are not toxic to the cells. Therefore, the results obtained on the inhibitory actions of the 

compounds were not related to any cytotoxic effect observed on cell viability. This 

observation is important as artemisinin and its derivatives have been reported to be 

neurotoxic at high concentrations in vivo (Classen et al., 1999). It also highlights the need to 

consider lower concentrations of the drug for indications like neuroinflammation.  

 

Figure 59: Proposed actions of artemisinin, artemether and artesunate on neuroinflammation in BV2 
microglia cells. 

 

Artemisinin, artemether and artesunate are currently used as anti-malarial drugs. They have 

also been proven very efficient in the treatment of cerebral malaria (Shakir et al., 2011). 

However, new pharmacological applications have been reported for these compounds. 

Artemisinin and its derivatives have been shown to have wide range of activity other than 

malaria ranging from anti-viral activity, to antifungal, to anti-inflammatory and anti-cancer 
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activity (Ho et al., 2014). This present study has also shown that artemisinin, artemether and 

artesunate possess anti-neuroinflammatory activity. Therefore, the remarkable activities of 

these compounds suggest their possible development for new indications. This will be highly 

beneficial as drug repositioning presents a new approach for the identification of new 

compounds in drug discovery.  

6.2. Comparison of the activity of artemisinin and its derivatives artemether and 

artesunate 

From this study, artemisinin and its derivatives have been shown to have anti-

neuroinflammatory actions in LPS activated BV2 microglia. However, it is important to note 

that the compounds have had these effects at various concentration and percentages. 

Artesunate showed much more inhibitory actions in all parameters investigated because the 

concentration investigated was 10 times smaller when compared to the concentrations 

investigated for artemisinin and artemether. Studies on artemisinin and artemether used the 

same concentrations but produced different effects. Investigations of inhibitory actions on 

phosphorylation of p65 showed that artemether is more effective than artemisinin the parent 

compound. At 40 M, pre-treatment with artemisinin produced 50 % p65 protein expression 

while artemether produced 45 % p65 protein expression. With p38 phosphorylation, results 

obtained also suggest that artemether is more effective in inhibiting p38 protein expression 

than artemisinin at the highest concentration studied. These observations suggest that 

artemether might be more potent than artemisinin. This observation is probably because the 

two compounds are metabolised differently. It is also important to note that these 

compounds were studied independently and the comparisons made are based on the results 

obtained from the individual studies. Therefore, highlighting the need to further investigate 

the compounds together to determine relative IC50 values to ensure adequate and accurate 

comparison between the compounds. In addition, a positive control compound with known 

activity should also be included in the study. In addition, weaknesses in the comparison also 

highlight the need to further investigate the active metabolite DHA which artemisinin 

derivatives are converted to. This might provide insights as to why artemether and 

artesunate seem to be more effective than artemisinin the parent compound. 

It is also important to highlight that the activity of these compounds differ from each other 

due to their pharmacokinetics properties and metabolism. As mentioned in section 1.6.2, 

these drugs have different bioavailability and elimination half-life. Comparison of artemisinin 

and artemether suggested that artemether might be more effective. This could be due to its 

higher bioavailability. This could also be attributed to the fact that 80% of artemisinin is 

bound to proteins with only 8-10 % unbound. On the other hand, the activity of artesunate at 
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very low concentrations when compared to artemisinin and artemether could be attributed to 

its higher bioavailability (82 %). However, it might be worth nothing that artesunate is more 

rapidly metabolised when compared to the other derivative artemether. These 

pharmacokinetics properties of artemisinin and its derivatives artemether and artesunate 

should be considered in further investigations of these compounds. 



142| P a g e  
 

Conclusions 

This study has shown that artemisinin, artemether and artesunate have shown an 

exceptional similarity in their pharmacological profile in the inhibiting neuroinflammation in 

LPS activated BV2 microglia cells. All the compounds inhibited neuroinflammation in LPS 

activated BV2 cells through marked interference with both NF-B and p38MAPK signalling. 

The compounds also produced consistent activation of the Nrf2/HO-1 antioxidant protective 

system in the microglia. This research has also provided the first evidence that the anti-

neuroinflammatory activity of these compounds is possibly dependent, at least in part, to 

their ability to activate the Nrf2 transcription factor. 

Recommendations  

The study has answered a lot of questions regarding the anti-neuroinflammatory potentials 

of artemisinin, artemether and artesunate. However, further studies are required to further 

explore the actions of the compounds in neuroinflammation. To this end, the following follow-

up studies are strongly recommended: 

a. Artemisinin, artesunate and artemether have shown an extraordinary consistency in 

the similarity of their pharmacological actions in LPS-activated BV2 microglia. It 

would be interesting to investigate these compounds together to determine relative 

IC50 values to ensure adequate and accurate comparison between the compounds. 

b. The three compounds showed consistent lack of activity on IKK phosphorylation. It 

would be useful to determine if their effects on IB was due to direct inhibition on the 

phosphorylation of this inhibitor or through interference with another signalling 

pathway, which cross talks with NF-B through IB.  

c. Further experiments are needed to explore detailed effects of these compounds on 

Nrf2/KEAP-1 signalling and its implications on their ability to enhance the antioxidant 

status of the microglia. 

d. In terms of drug discovery, it is recommended that experiments need to be done to 

test the neuroprotective effects of these compounds in neuronal mono-cultures, as 

well as neuron-microglia co-cultures. Considering their significant effects on NF-B, it 

would be interesting to explore possible impact on critical targets of amyloidogenesis 

and neuronal apoptosis, especially those that have been shown to be 

transcriptionally controlled by NF-B. 

e. Artemisinin derivatives are metabolised to DHA. Further investigations into the anti-

neuroinflammatory properties of DHA in LPS-activated BV2 microglia should be 

carried out. In addition, studies relating to the permeability of DHA into the CNS 

compared to the parent compound artemisinin should also be explored. 
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