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New low cost sensing head and taut wire method for automated
straightness measurement of machine tool axes.

O Borisov, S Fletcher, AP Longstaff and A Myers

Centre for Precision Technologies, School of Computing and Engineering, University of
Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
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Abstract. This paper describes a novel method to measure straightness error of an axis of motion with
a system utilizing taut wire, optical sensor and reference error cancellation technique. In contrast to
commonly used taut wire, straightedge or laser-based methods it combines simplicity of setup and low
cost with high levels of automation, accuracy and repeatability. An error cancellation technique based
on two-point method is applied for the first time to a versatile reference object which can be mounted
at any place of machine’s working volume allowing direct measurement of motion straightness of a
tool point. Experimental results on a typical machine tool validate performance of the proposed taut
wire system with a commercial laser interferometer operating in the same conditions is used as a
reference. The proposed method shows highly repeatable results of better than +0.25um over the
range of 0.48m and measurement accuracy comparable to the interferometer of £0.5pum.

Keywords. Straightness, error separation, two-point method, taut wire, slotted optical sensors, low
cost measurement, motion error.

Abstract. This paper describes a novel method to measure straightness error of an axis of motion with a
system utilizing taut wire, optical sensor and reference error cancellation technique. In contrast to commonly
used taut wire, straightedge or laser-based methods it combines simplicity of setup and low cost with high
levels of automation, accuracy and repeatability. An error cancellation technique based on two-point method
is applied for the first time to a versatile reference object which can be mounted at any place of machine’s
working volume allowing direct measurement of motion straightness of a tool point. Experimental results on
a typical machine tool validate performance of the proposed taut wire system with a commercial laser
interferometer operating in the same conditions is used as a reference. The proposed method shows highly
repeatable results of better than +£0.25um over the range of 0.48m and measurement accuracy comparable to
the interferometer of £0.5um.

1. Introduction

The performance characterisation of machine tools is prevalent in modern manufacturing industry where
component accuracy is crucial. Straightness in two orthogonal planes, along with positioning error and three
angular deviations, often referred to as roll, pitch and yaw, represents six components of error of any
nominally linear motion system [1]. On machine tools having multiple axes, those geometric errors combine
and affect the accuracy of produced components. It is important, therefore, that all geometric errors including



straightness are known (measured) to understand capability and ideally reduced to a minimum to maintain
highest accuracy of machining,

Unlike other geometric errors, straightness error measurement involves detection of lateral displacements
along the direction of axis travel. Most direct straightness-measurement systems consist of a straightness
reference and a displacement indicator [2]. There is always a great difference in values of straightness error
compared to the distance along which they are measured. It is approximately 10° and so the straightness
reference should be — long and flat at the same time. Here lies the main problem of straightness measurement
in space — finding a suitable reference object. Measurement of straightness typically involves material
artefacts (straightedges) or various optics (from telescopes to lasers) or even levels using earth gravitation as
a horizontal reference for angular displacements to be converted to the lateral ones.

Because straightness measurement cannot be split over the distance along the axis, straightedges are limited
by their own dimensions allowing measurements within their lengths only. An attempt to solve this issue by
Pahk relies on multiple measurements with partial overlapping [3]. Increased range comes at a cost of
reduction in accuracy which is highly dependent on the number of overlaps and overlapped length.
Telescopes and autocollimators, which have been the first optical methods [4], with time advanced to
numerous laser-based techniques where a highly coherent laser beam was used as a straightness reference [ 5-
7]. Conventional Helium-Neon laser interferometers manufactured by companies such as Agilent and
Renishaw have set a high level of measurement accuracy (Agilent 55283A +0.2% of measured value,
Renishaw XL-80 +£0.5%) but did not put an end to research in the straightness area. Being relatively
expensive, slow, complicated and susceptible to disturbances over longer ranges, laser interferometers gave
way to numerous alternatives and advancements aiming to overcome those well-known disadvantages.

Fan and Zhao introduce a simple laser test for measuring straightness using a four-quadrant photo
detector [8]. The method does not depend on expensive matched optics and uses a shorter laser beam to
improve its stability, demonstrating 0.5um repeatability on a 100mm range. This result is not validated
against other methods; the system is only calibrated with a laser interferometer which can still leave
systematic errors of the system unknown. To increase sensitivity of a conventional laser (HP5518A) using
more sophisticated optics, Lin [9] shows a possible advancement in accuracy achieving repeatability of 1um
over 200mm.

A solution to avoid using more stable (and more expensive) dual-frequency lasers is described by Feng [10]
and Kuang [11]. A single-mode fibre-coupled laser produces a beam which strikes into a corner reflector
mounted on the moving spindle and reflects back to a photodetector. Like all laser-based methods, this one
suffers from beam pointing stability issues which get worse with distance. Moreover, the method involves a
laser interferometer for calibration and relies on quality of the beam which leads to further expense related to
a powerful laser emitter. Internal setup of the measuring unit requires space, numerous adjustments and
laboratory conditions.

Measuring angular displacements instead of linear ones using a different optic setup is presented by
Zhu [12]. Similar to previous laser method in terms of setting up, this one claims to provide a higher
accuracy once again taking advantage of improved and more complicated optics. The same time the system
remains sensitive to measurement distance.

Chen et al [13] describe a dual-frequency laser with two Wollaston prisms to compensate air disturbances
over a very long range of 16m. An experiment, carried out in laboratory conditions, claims to show high
measurement stability of 3.6um. This, however, not necessarily means the corresponding level of accuracy
because only overall 230um-high V-shape of the measured profile was reproduced when its details fell into
the area of measuring system repeatability of 20um.

All the improvements mentioned above might not be sufficient to solve the issue with lasers where accuracy
is compromised over the measuring range as it is affected by the refraction index of air turbulence and, for
some systems, beam pointing stability. Estler [ 14] in his comprehensive review of long range measurements,
where he describes all the factors affecting a laser beam propagating in the air, shows that the beam actually
bends and this happens rather randomly which can make modelling and compensation of such error a
challenge.

To overcome the limitations of methods using a beam of light or solid artefacts a different physical reference
object together with a different measurement setup is required. The first one needs to be flexible in length yet
solid which mean range flexibility and low environmental susceptibility. The second one needs to be range-
independent and non-contact to maintain high measurement accuracy over the range. A technique that would
fit into those requirements is straightness measurement using a taut wire. It provides the overall desired
physical setup but its accuracy and efficiency issues are yet to be addressed.



2. Method

The taut wire is a known reference for measuring straightness [1, 14, 15]. A length of the wire, stretched
between two points, gives a straight line assuming catenary effects are negligible, eliminated or subtracted.
The wire can have long lengths (The wire may begin to sway with lengths greater than 15m) and any
orientation in space needed to make it nominally parallel to an axis of motion, such as on a machine tool.
Step by step misalignment comparison of wire and axis nominal travel trajectory allows calculation of
straightness of one relative to another. The main reasons why this method is not widely used at present are its
low accuracy and inefficient data gathering methods. The accuracy is compromised by both variability of the
wire reference and typical wire detection methods such as microscope or electrical contact. Even commercial
non-contact implementation with the use of laser diode [16] has stated precision of +5 pum. All of those
methods require manual intervention leading to a time-consuming process and involve relatively high levels
of measurement uncertainty. Figure 1 shows the proposed solution to overcome those issues:

Available, easy mountable Fast, simple wire positioning

Low cost, fast
and accurate
straightness

measurement

1 | Taut wire as a reference > < Fine adjustment carriages | 3

2 | Slotted optical sensors > < Wire error cancellation | 4

Low cost, sensitive, simple data capture Elimination of the wire error

Figure 1. Measurement principle.

Each of the key features of the method is described below:

1. Nylon fishing wire is readily available in any length; it is lightweight, portable and easily-mountable. Its
diameter variation depends on wire quality, stretching force and settling time and normally lies within 2-
20um between the lowest and highest point. A wire made of steel, like string on a musical instrument is
successfully used in fixed-length straightedges [15], but it is less suitable for long ranges because of its
limited availability and poor dimensional quality. Thin wires provide low sensitivity when using an optical
detector and require more effort when choosing the right stretching force (to get the wire as straight as
possible while avoiding breakage).

2. Slotted optical sensors like those manufactured by Omron are primarily designed for automation
applications to detect the presence of a non-transparent object between the fixed wavelength emitter and
receiver. Bench testing has proved that they have sensitivity and stability enough for detection of objects
even on a sub-micron level. For this work an Omron sensor, shown in figure 2, is used as it provides good
balance between sensitivity and range and can be easily mounted. These are low cost, portable, and mass-
manufactured so are readily available and have provided an excellent solution for measuring lateral
displacements of a stretched wire passing through the sensing area.
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Figure 2. Omron photomicrosensor and its sensitivity graph.
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3. Fine adjustment carriages are used for precise alignment of the wire with the measured axis within a travel
range of several millimetres. Adjustment of the carriages can be checked very quickly using feedback from
the sensors without the need of additional equipment. Removal of slope between the wire and 0.5m axis
typically takes 5 minutes while alignment of the laser beam can take 7-10 minutes.

4. The technique of the reference error cancelation during step by step straightness measurements (also
referred as “two-point method”) was first published in 1979, applied to a machined steel plate [17-18]. Error
in the reference was taken out of calculation by using data from an additional displacement sensor. If the
distance between a pair of sensors is equal to the increment of axis travel, they both can be used together to
measure relative displacement at every point. Adding each value to the sum of the previous reading, starting
from zero, gives a separated lateral error of measured axis.

This approach was successfully tested on a 7m long boring machine, when the error was measured along 5m
range with 100 or 200mm increments [15] showing its high potential. Gap sensors (sensitivity Sum/mV)
provided good correlation with a laser interferometer measuring an error of 40pm.

The improvements that followed [19-20] still rely on a solid 3-dimensional straightness reference, requiring
consideration of its pitch error which had to be measured separately. Another issue is a large accumulated
error — negligible on the first step, its amount soon exceed the measured value. To prevent that, a larger step
size and calculation of intermediate values have been proposed [20]. More recent applications of two-point
method (even expanded to three-point) are in topography and surface profile measurements [21-23] where
the reference error of a moving stage is separated achieving sub-micron accuracy levels using capacitive
sensors.

All those developed methods represent a good use of error cancellation principle applied to straightness
measurement of machined parts whether it is a precision guide, cylinder or a flat surface. Application of
those methods to machine tool’s axes can be challenging because the straightness reference needs to be
specially positioned and have a variable length if it is to be useful on a wide range of machines.

On the other side, straightness of an axis guide way can be very different from the straightness of motion of
the tool or workpiece point due to the error magnification by other axes forming a kinematic chain between
them. Therefore it is not sufficient to measure the guide or attached artefact (for example, using capacitive
sensors), a direct measurement between the tool/workpiece interface is necessary to ensure high accuracy.
Here we introduce an alternative use of the error cancelation technique when the straightness reference is a
stretched wire. Unlike a straightedge, the wire can be considered to be a 2-dimensional reference as its cross-
section is round. This means only one wire error, its change in diameter, needs to be eliminated and the only
measured lines are axis and wire surfaces belonging to the same plane. The wire is a simple object which can
be ecasily placed at any part of machine’s working volume to measure straightness of corresponding axes
directly, without estimation which can be a source of measurement error like it is the case with laser
interferometry.

Counterweight Optical sensor

Double adjustable carriages

Taut wire

Saddle Guide
I ol / /. Ap
Measured
distance

Figure 3. Taut wire measurement system mounted on a machine tool.



The taut wire setup shown in figure 3 consists of: two stands, the distance between which covers the full
measured axis; the wire itself stretched between them; the new optical sensing head mounted on the moving
component of the machine using a post having the same length as a typical tool so that systematic and
random (vibrational) effects from linear and rotational error components will be representative of those in
operation. Position of the wire can be adjusted using the aforementioned dual axis carriage. Measurement of
the axis straightness is based on the following conditions:

1. Both the wire and the measured machine axis have time-invariant (at least for the duration of the test)
surface profiles (straightness values over the range) i.e. repeatable systematic errors dominate over non-
repeatable and random errors.

2. Straightness error of the first point of the measured surface has zero value. Upon completion of the
measurement, least-squares fitting eliminates any residual slope while not changing its shape.

3. Measurement time is sufficiently short so that no change in straightness of the machine axis can occur.
These conditions enable separation of the wire surface profile from the profile of measured axis. In case of
single sensor measurement they both combine and the total reading at every point represents the sum of both
errors. If wire error greatly dominates the straightness error of the axis, measurement fails.

Along with wire error caused by deviation of its diameter, there are random errors caused by wire movement
due to airflow, vibration and stretching force.

Taut wire

Measured
axis

Readings taken
by two sensors
in the same axis
position

Figure 4. Dual sensor measurement.

Figure 4 shows the order of measuring: every time the machine stops, current axis error combined with error
of the wire on current and the subsequent steps are measured. This way every time readings are taken from
both sensors. Because the distance between the sensors matches the axial increment (the method to achieve
that is described at the end of this section), the first sensor takes position of the second one on the previous
step and measures the same error on the wire but combined with different error of the axis. On the figure it is
shown by pairs of rectangles (pairs of readings): 1, 2, 3... The following subtraction of second reading of the
first pair from the first reading of second pair (both have the same amount of wire error) gives the difference
between axis errors which is between the first and the second steps. Accumulation of those numbers obtained
from full number of steps (starting from 0) gives the straightness error of the axis on every step.

When two sensors are used simultaneously and readings are taken at every two adjacent points of the wire,
and the distance between those points is the same as the machine movement increment, the following
calculation [17] separates axis and wire errors (including some random ones) from each other:

i
Xp =X T8, =C, = Z(Si —Ciy) (1)
1

Where x — axis error on step i,
¢ — combined (measured) error from the first sensor,
s — combined error from the second sensor.

According to the first condition x; = 0, all the other values of x are calculated using equation 1.

This equation confirms that the calculated axis error is not influenced by the wire error (including slope) at
all as long as it and the machine positioning is repeatable. This error separation enhances the accuracy of
straightness measurement regardless of the distance and error amount, though importance of the wire and
machine repeatability increases with the length of measured axis and number of sampling points as the
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positioning error accumulates. To control the accumulation, all tests were carried out as multiple bi-
directional runs and the difference between corresponding results has proven to be very small, typically less
than one tenth of a micron during all of the validation tests.

Error cancellation reduces only the systematic part of measurement error; random contributors like errors in
the sensors themselves, including electrical fluctuations, remain. Because those measurement errors are
cumulative, even such small effects could become problematic over longer axes. The method can therefore
be expanded to a third sensor to provide averaging at each measurement point. Due to the cost and
availability of the sensors, this does not degrade the practicality of the solution at all.

Separation of the sensors in the measuring head is determined once by using a piece of opaque tape attached
to the wire. Detection of the edge of the tape while slowly moving the machine axis gives each sensor a clear
change in readings taken and the difference in machine coordinates of both points gives the measured step
size. Uncertainty using this simple method comes from accuracy of the axis, shape of the tape, speed of
motion, etc. It is generally in order of 10um which is sufficient because rate of change in diameter of the
fishing wire is very small, typically stays within a tolerance of 0.1um/Imm (i.e. just 0.001pum over 10um).

3. Measurement error

The proposed combination of taut wire and multiple optical sensors used together cancelling the reference
error, is subject to certain systematic errors limiting the method’s accuracy. The two-point method itself, as a
basic principle is perfect and the error appears on the stage of its practical implementation. In case of profile
measurements with capacitive sensors, the main error factors reported are zero-difference [20] and pitch
error [22] which need to be measured separately and the system calibrated accordingly.

This system uses multiple optical sensors which have different and non-linear outputs but this difference is
relatively small and the output is fairly linear in the range of 200pm (figure 2). After simple calibration
described in section 5 all outputs are linearized into one straight line with a permanent sensitivity value for
all sensors.

Rotational components of a measured axis of motion have a negligible effect on the optical sensors because
rotation of the wire within the sensing area does not change the amount of light blocked by the wire and
consequently the sensor output is not affected:

L NN
Taut wire /

Sensing area

Sensor body

Roll Pitch Yaw

Figure 5. Rotational components of motion affecting the system.

The sensors are sensitive to linear displacements in one direction only, i.e. errors in the transverse directions
resulting from the machine’s kinematic chain and length of the post consisting of both linear and rotational
components do not contaminate the reading. Similarly, change in the relative orientation of the sensor to the
wire does not affect the reading because the result is negligible change in the amount of light blocked by the
Sensor.



4. Physical system

A system diagram and the new measurement device itself are shown on figure 6. Raw voltage from the
optical sensors passes through low pass (=3Hz) filters before undergoing analogue to digital conversion for
calculation of the measured error using equation 1.

Measurement
unit

Reference wire

:[ Low-pass filters ]
:[ 24bit 4-channel ADC] } NI 9239

| Data logger
| Data processor
->[ Reporter

. PC

Figure 6. The system dataflow diagram and measurement device.

The device is assembled on a steel plate carrying optical sensors, stabilized power circuit and individual
sensitivity controls for every sensor. Possible potentiometer drifting proved to have a negligible effect on the
measurement accuracy because only power going to light emitting diodes can change and therefore does not
change sensitivity of the sensors. Manual adjustment moves the working zone vertically within the sensing
arca (shown on figure 2) allowing better intersection between sensors to increase straightness measuring
range.

The present design has three sensors mounted horizontally. This works in several different measurement
schemes: using first and second sensors as a pair for error cancelation; using second and third in the same
way; using both pairs simultaneously and taking the average of them to reduce the total uncertainty; take the
first and third pair when longer step size is required (to reduce the time of long range measurements); use the
first, second and third separately or all three separately (for single sensor measurement with averaging when
the reference error is negligible compared to the axis error). Orientation of the device determines the
straightness error to be measured. Spare space is available for a set of vertically mounted sensors for
simultaneous straightness measurement in both perpendicular planes.

Dynamic data capture, when the machine moves continuously, is also possible with axis feed rate not
exceeding 150mm/min (in the current implementation of the sensing head). This speed depends on the
maximum speed of sensor power circuit and can be determined experimentally finding a maximum feed rate
value which does not change the measured straightness value compared to the one obtained with a lower
speed.

5. Validation

The system was validated on a machine tool axis that was 0.5m long and horizontally orientated.
Straightness in the vertical plane was measured using a Renishaw XL-80 laser interferometer having stated
straightness measuring accuracy of £0.5um over 0.48m. Shortly after, measurement was done using the
proposed taut wire (DAIWA Sensor Monofil 0.26mm diameter) with minimal Abbe offset to eliminate
effects of angular errors on the axis. In both cases the straightness profile was obtained with step size of
19.956mm, equal to the actual distance between two optical sensors. All data readings were taken with four
second dwell interval to allow the long term averaging of the interferometer system to stabilise. For new
system, the same dwell time was used during which averaging of 40 readings was used to reduce the amount
of noise and small random errors. Every test run was bi-directional to ensure random error detection. Slope
errors on both planes were eliminated prior to measurement using double adjustable carriages (figure 3).



Both optical sensors were calibrated using a high accuracy (<3um over full 12mm range) digital dial test
indicator so that the linear sensitivity was established with a magnitude of 1.6mV/um.

In the case of the laser, an average of three sequential bi-directional tests was obtained for comparison with
the wire. To include in the validation consideration for the fact that every piece of wire has its own unique
surface profile, three different pieces were tested and on each of those three runs were also completed. Prior
to measuring, the wire was left to settle for approximately five minutes. Normally such time period is enough
for good quality fishing wire to stabilize: during that time it is continuously changing its diameter becoming
thinner as it stretches. Stabilization time is individual for every wire material, thickness and stretching force.
Finding the minimal period while the wire cannot be used for measurements is a simple procedure of logging
measurement data while the machine is not moving, assuming relatively stable thermal conditions.

Figure 7 shows averaged (here and after — least square fitted to remove residual slope) results of measuring
straightness using the same piece of wire. Three bidirectional tests performed one after another show

repeatability within 0.2um.
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Figure 7. Repeatability within one piece of the wire.
After three tests were completed, the wire was replaced, a new wire piece left to settle and measured. Then
again replaced, settled, measured. The results are shown in figure 8, with non-repeatability across all nine

measurements never exeeding 0.5um.

2

Straightness error, pm

Axis travel, mm —_—Wirel ===-- Wire2 =-= Wire3

Figure 8. Wire repeatability within three pieces.

Figure 9 contains results of a single-sensor measurement of three wire pieces for comparison. It is clearly
visible that without error cancellation the taut wire is poor as a straightness reference giving a non-
repeatability of up to 4um and no obvious common profile which can not be obtained by averaging.



Straightness error, um

Axis travel, mm — Wirel  ===-- Wire 2 - = Wire3
Figure 9. Wire repeatability within three pieces (single-sensor test).
Figure 10 confirms a good correlation to within 1um between averaged laser and average of three wires

measurement results. Taking into account a very low value of measured error and fundamenal differences
between measuring methods, certain output discrepancy should be considered normal.

2

Straightness error, um

Axis travel, mm —_—\\ire ===-- Laser

Figure 10. Wire against the laser.

To find out the actual measurement capability of both methods in terms of random error, idle mode (the
machine is nominally stationary) tests were carried out. The laser was set to long term averaging mode, all
tests were sequential, with a few minutes time between them, all in normal workshop conditions including
airflow and vibrations. The results, shown in figures 11 and 12 demonstrate one order of magnitude
difference. The stability of the wire setup output is significantly higher than that of laser at less than 0.1um
over the duration representing typical measurement tests. This is particularly important because the test was
done under representative manufacturing conditions including working machinery in close proximity,
airflow from people moving around, temperature gradients, vibration, dust and dirt. Two positions of the
reader head were tested for stability; the middle of the wire and close to the end where the wire is mounted.
No noticeable difference was detected.
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Figure 11. Laser interferometer idle stability.
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Figure 12. Wire idle stability.

It is important to note that figure 12 contains the accumulated error of almost a hundred sequential readings
yet maintains excellent stability. Overall, the proposed system appears to be highly resistant to
environmental effects, which gives reason to expect good results from measuring longer axes.

6. Conclusions

A novel straightness measuring system comprising ultra-low cost optical sensor unit, taut wire (with fine
adjustment carriages) and error cancellation technique is proposed. The system is capable of eliminating the
inherent random wire error and demonstrates similar accuracy level of £0.25um compared to a conventional
laser interferometer and superior repeatability over a measuring range of 0.48m. A quick and simple wire
setup allows measurement of an axis in any position and in principle, both coordinate planes at once. The
method has been successfully tested over a 0.48m distance which validates the newly designed sensing unit
and methodology. In contrast to the laser interferometry method, the wire setup does not become more
difficult with the distance as sensitivity of reference adjustment does not change. Practically it can mean a
considerable difference in set-up time increasing with the length of measured axis. In this case the system
can be used as a supplement to laser interferometer, increasing the efficiency of its industrial application.
Experimental results presented confirm that the output does not depend on actual wire superficial
straightness or variation in diameter after its error is eliminated using the double sensor measurement
method. Finally, the result is shown to be stable and accurate, providing an excellent opportunity of reducing
the time and cost of straightness measurements.

The aforementioned low cost nature of the solution also makes it a candidate for permanent installation
either as a live sensor on a structure or available locally for efficient normal or quick check axis
measurement to feed into SPC. Further development will concentrate on longer axes measurement and on
adding a second set of sensors for simultaneous capture of straightness profiles in two planes decreasing test
time without any appreciable increase of associated costs.
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