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Strategy and pattern recognition in expert

comprehension of 2× 2 interaction graphs

David Peebles

Department of Behavioural and Social Sciences, University of Huddersfield, Queensgate,
Huddersfield, HD1 3DH, UK

Abstract

I present a model of expert comprehension performance for 2 × 2 “interac-
tion” graphs typically used to present data from two-way factorial research
designs. Developed using the ACT-R cognitive architecture, the model sim-
ulates the cognitive and perceptual operations involved in interpreting in-
teraction graphs and provides a detailed characterisation of the information
extracted from the diagram, the prior knowledge required to interpret in-
teraction graphs, and the knowledge generated during the comprehension
process. The model produces a scan path of attention fixations and a sym-
bolic description of the interpretation which can be compared to human eye
movement and verbal protocol data respectively, provides an account of the
strategic processes that control comprehension, and makes explicit what un-
derlies the differences between expert and novice performance.

Keywords: Graph comprehension, ACT-R, Computational modelling

1. Introduction

Working with graphs is a complex skill that requires specific knowledge of
the representational system being used together with a set of procedures to
map spatially represented information in the graph with a set of propositions
that specify quantitative and qualitative relationships between the entities
represented. Providing a detailed account of this skill therefore requires one
to specify a number of core assumptions including: what and how information
is encoded in the diagram, what and when information is obtained from the
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diagram by the user during a task, what and how prior graph knowledge is
stored and utilised, and what new knowledge is created during the process.
In addition, one must also specify the strategies people employ to carry out
different tasks and how much these strategies use information in the diagram
and in stored internal representations.

There have been several attempts to provide detailed process models of
different aspects of graph use. Models are constructed from sets of percep-
tual and cognitive operators (e.g., encode the value of an indicator, make a
spatial comparison between indicators (Gillan, 1994), compare two digits in
working memory, or make a saccade (Lohse, 1993)), obtained either from task
or verbal protocol analyses. Lohse (1993) and Gillan (1994) have produced
models of question answering with several different graph types (including
line graphs, bar charts and scatter plots) by constructing sequences of oper-
ators (each of which has an associated execution time) to generate predicted
scan paths across the graph and total task completion times which can be
compared to human data.

Other researchers have procedurally analysed graph use for different pur-
poses. For example, Casner (1991) identified a set of perceptual and cognitive
operators to construct models of several graph-based tasks which informed
an automated system that generated graphical representations most suited to
the tasks commonly undertaken with them. A similar method was adopted
by Tabachneck-Schijf et al. (1997) in their analysis of an economics expert’s
construction of a graph while explaining the principle of supply and demand
which they then used to develop a computational model incorporating both
diagrammatic and propositional representations.

More recently, the cognitive modelling of reasoning with information dis-
plays has been advanced by the development of cognitive architectures ; com-
putational theories of the large-scale structure of the mind providing accounts
of how cognition is controlled and how knowledge is encoded, stored, retrieved
and utilised (e.g., ACT-R (Anderson, 2007), EPIC (Meyer & Kieras, 1997),
and Soar (Laird et al., 1987)).

The first two of these architectures incorporate theories of visual pro-
cessing and motor control which allows modellers to produce more detailed
accounts of the information obtained from the display during the task. For
example Peebles & Cheng (2003) used ACT-R to produce a computational
model of question answering using two different types of line graph. Their
model generated saccades and fixations as it answered each question which,
together with task completion times, were compared to human data. In ad-
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dition, the model was able to account for human scan paths in terms of the
varying demands on memory imposed by different questions.

The Peebles and Cheng study, as did those by Lohse (1993) and Gillan
(1994), investigated question answering in which participants were given
items of information and were required to produce associated information
using different processes, including identification (e.g., “In 1997, what was
the value of gas?” (Peebles & Cheng, 2003)), comparison (e.g., “In 1977
did tin cost less than sulphur?” (Lohse, 1993)), and arithmetic computation
(e.g., “What is the sum of A, B, and C?” (Gillan, 1994)).

While these are important tasks, particularly for investigating sequences
of elementary processes, it could be argued that they do not necessarily reflect
how many people normally work with graphs and that they do not address
the important prior comprehension stage where labels and graphical features
are encoded, associated, and interpreted (Carpenter & Shah, 1998).

Comprehension requires knowledge of the conventions used in the graph
to represent data and other facts such as how labels are to be interpreted
based on their location. The output of the process is assumed to be a set
of knowledge structures that represent the variables and graphical features
together with structures that encode knowledge about the quantitative or
qualitative relationships between the variables depicted.

A prime example of a scenario where people encounter a graph with the
sole aim of comprehending the relationships between variables (as opposed
to identifying trends or individual values for example) is the analysis of data
from factorial experiments. The simplest form of factorial design is the two-
way factorial design, containing two factors, each with two levels, and one
DV. Statistical analysis of these designs typically results in a 2× 2 matrix of
mean values of the DV corresponding to the pairwise combination of the two
levels of each IV. Interpreting the results of even these simplest of designs
accurately and thoroughly is often not straightforward however, but requires
a significant amount of conceptual understanding—for example the concepts
of simple, main, and interaction effects. As with most other statistical anal-
yses however, interpretation can be eased considerably by representing the
data in diagrammatic form.

Data from two-way factorial designs are most often presented as either
line or bar graphs—variously called interaction or ANOVA graphs. Examples
of line graphs used in Peebles & Ali (in preparation) and this study are shown
in Figure 1. Interaction line graphs differ from more conventional line graphs
because the data represent pair-wise combinations of the IV levels so that
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Figure 1: Four of the eight line graphs used in the experiment.

the variables plotted on the x axis are categorical, regardless of whether
the underlying scale could be considered as continuous (e.g., hot/cold) or
categorical (e.g., male/female).

The rules for interpreting interaction graphs are quite specific therefore
and sufficiently different from other more frequently encountered line graphs
that simply applying general interpretive rules will not prove particularly
helpful (other than for obtaining the DV values of specific conditions etc.)
and may lead to the misinterpretation of the x axis variable levels as repre-
senting two ends of a continuous scale (Aron et al., 2006; Zacks & Tversky,
1999).
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It has been argued however (Kosslyn, 2006, e.g.,) that the risk and costs
of misinterpreting line graphs are outweighed by the benefit of lines for pro-
ducing distinct and easily recognisable patterns that indicate key features of
the data such as main effects or interactions. These patterns will be discussed
in detail below.

In a series of studies, Peebles and Ali have observed and recorded novices
(undergraduate psychology students) and experts (cognitive science profes-
sors and postgraduate researchers) interpreting interaction graphs like the
ones in Figure 1 (Peebles & Ali, 2009; Ali & Peebles, in press; Peebles & Ali,
in preparation). These studies have shown that without knowledge of the
appropriate interpretive rules, novices’ interpretations are often limited to
qualitative descriptions of differences between conditions and can be skewed
by the different Gestalt principles of perceptual organisation (Wertheimer,
1938) operating in the graph. In contrast, expert users are able to employ
their knowledge of which graphical features represent which effects to iden-
tify relationships between variables much more rapidly and accurately with
no prior knowledge of the domain variables being represented in the graph.

An example of this is shown in the verbal protocol below which contains
a verbatim transcription of a (not atypical) expert participant interpreting
the graph in Figure 1c (taken from Peebles & Ali (in preparation)).

1 (Reads) “Glucose uptake as a function of fasting and relaxation training”
2 Alright, so we have. . . you’re either fasting or you’re not. . .
3 You have relaxation training or you don’t. . .
4 And so. . . not fasting. . . er. . .
5 So there’s a big effect of fasting. . .
6 Very little glucose uptake when you’re not fasting. . .
7 And lots of glucose uptake when you are fasting. . .
8 And a comparatively small effect of relaxation training. . .
9 That actually interacts with fasting.

The protocol (which lasted 43s) shows the initial identification of the IVs
and their levels followed by a rapid identification of the key features of the
data; the main effect of the x axis variable and the interaction between the
two IVs.

The purpose of the research reported here is to develop a computational
model of graph comprehension that specifies the processes underlying both
expert and novice behaviour with sufficient detail and comprehensiveness to
satisfy all of the criteria outlined at the beginning of this paper. Specifically,
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the model aims to provide a precise account of the minimum information re-
quired to interpret interaction graphs appropriately together with a hypothe-
sis as to the nature of the processes involved in representing and interpreting
that information. The model is developed within the ACT-R cognitive archi-
tecture and therefore embodies assumptions about the nature of the mental
representations and the computations that form the strategies used to gener-
ate new representations. Finally, the model provides an explanation for the
differences between expert and novice interpretations.

2. A model of expert graph comprehension

Space limitations preclude a detailed description of ACT-R here. How-
ever a comprehensive account of the cognitive architecture can be found in
Anderson (2007). In summary, ACT-R consists of a set of modules that ac-
quire information from the environment, process information, and execute
motor actions to achieve goals. ACT-R has memory stores for declarative
and procedural knowledge. The former consists of a network of knowledge
chunks while the latter is a set of production rules. Cognition proceeds via
a pattern matching process that attempts to find production rules with con-
ditions that match the current state of the system and tasks are performed
through the successive actions of production rules.

ACT-R also incorporates a subsymbolic level of computations that gov-
ern memory retrieval and production rule selection and which allow models
to account for widely observed recency and frequency effects on retrieval
and forgetting. Subsymbolic computations also underlie ACT-R’s different
learning mechanisms.

For tasks involving displays and other devices, task environments can be
defined to be acted upon by the model. The graphs used in this study are
defined as sets of visual objects (lines, circles, rectangles, and text) with
certain features (size, colour) at specific x-y coordinates on a 2D window.

The graph comprehension model is based on verbal protocol data from
novice and expert users (Peebles & Ali, 2009; Ali & Peebles, in press; Pee-
bles & Ali, in preparation). In these studies, verbal statements recorded
during the comprehension task were coded and categorised in terms of their
functional role and content (e.g., “an association between a level and its
identifier”; “a comparison between the two legend variable levels for one of
the levels of the x axis variable”) to produce a set of common interpretive
operations.
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The verbal protocols indicate that comprehension is typically carried out
in two main phases: (a) a variable identification stage followed by (b) a pat-
tern recognition and description stage. The protocols also reveal that experts
and a large proportion of novices rarely report specific DV values, but typ-
ically produce qualitative descriptions of the differences between conditions
(Trafton et al., 2000, cf.).

In the first stage, the three variables are identified, categorised as de-
pendent or independent according to location, and the latter associated with
their levels, which in turn are associated with identifiers (left or right position
for the x axis variable and colour for the legend variable).

In the second stage, the plot region is scanned and the pattern produced
by the plot points is interpreted. This interpretation is typically done by
comparing distances between plot points and using the comparison to probe
long-term declarative memory for interpretive knowledge. If successful, the
retrieved knowledge is used to construct an interpretation. If no interpreta-
tion is available however, the model will simply describe the identification
or comparison process being carried out. Interpretive operations are carried
out until either a full interpretation is produced or until no other operations
are available or identified.

2.1. Representing and encoding information in the graph

The key information that the model encodes from the display is the set
of four x-y coordinate locations and the distances between them. The per-
ceptual processes by which this spatial information is obtained and initially
represented are not specified in detail, although it is assumed to be acquired
using a subset of the elementary perceptual tasks (e.g., judgement of length,
direction, area, position on a common scale etc.) identified by Cleveland &
McGill (1984).

Two elementary perceptual tasks are used extensively to encode informa-
tion from the display. The first—judgement of position on a common scale—
is used to encode the distance between two plot points, initially as a numerical
value (the proportion, p, of the distance to the overall length of the y axis).
This numerical code is not used directly in reasoning however but is con-
verted to a symbolic qualitative size description: “no” (p = 0), “very small”
(0 < p < 0.2), “small” (0.2 =< p < 0.4), “moderate” (0.4 =< p < 0.6),
“large” (0.6 =< p < 0.8), and “very large” (0.8 =< p =< 1.0).

The second elementary perceptual task—judgement of length—is used in
the comparison of distances required to evaluate differences between variable
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levels (e.g., comparing the distance between the two High Fasting values with
that between the two Low Fasting values in Figure 1c). The elements formed
for these comparisons are assumed to be the result of Gestalt processes of
perceptual organisation (Ali & Peebles, in press; Kosslyn, 1989; Pinker, 1990)
by which users group objects by colour or proximity.

It is also assumed that in such comparisons the “direction” (i.e., the rela-
tive ordering of levels) of a length is encoded. For example, when comparing
the High Fasting and Low Fasting distances in Figure 1c, the fact that they
have different levels of the Relaxation Training variable as their higher value
will be noted. This additional information is essential for the identification
of various global patterns such as crossed, parallel and diverging lines.

2.2. Prior graph knowledge

Two forms of declarative knowledge are involved in the task: prior knowl-
edge relating to how the graph represents information and the knowledge of
the variables and their relationships generated during the comprehension
process itself.

There are three core items of knowledge required to interpret interaction
graphs. Two are common to many Cartesian graphs and concern (a) the
typical allocation of the dependent and independent variables to the graph
axes and legend and (b) the principle that the distance between two graph-
ical elements encodes the magnitude of a relationship between the concepts
represented by those elements.

The third set of facts required are specific to the graph type and concern
the spatial indicators of the three key relationships; simple effects, main ef-
fects, and interactions. These indicators are: (a) the distance between two
plot points indicating the size of the simple effect of the level jointly repre-
sented by those points, (b) differences in the y-axis location of the midpoints
between two pairs of plot points indicating the size of the main effect of the
variable, and (c) differences in the inter-point distances between levels, com-
bined with information about their point ordering, indicating the size, and
type of any interactions that may exist.

Some relationships form distinctive and relatively common patterns how-
ever which experts learn to identify rapidly, either through explicit instruc-
tion (Aron et al., 2006, e.g.,) or simply through repeated exposure. Four
patterns indicating the existence (or otherwise) of interaction effects are par-
ticularly common and readily identified: the “crossover interaction” shown
in Figure 1c, the “sideways V” pattern shown in Figure 1d, and a related
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Figure 2: Graphical representation of knowledge generated after processing
the legend of Figure 1b.

pattern formed by a horizontal and a sloped line (Figure 1b). In contrast,
parallel lines (e.g., Figure 1a) signal that there is no interaction between the
IVs.

In addition to these interaction patterns, two patterns indicating sub-
stantial main effects can also be recognised by experts (and are often rapidly
identified by novices due to their visual salience). These patterns are shown
in Figures 1a and 1c. The large gap between the mid-points of the two lines
in Figure 1a shows a large main effect of the legend variable while the large
difference between the mid-points of the two values representing each x axis
level in Figure 1c reveals a large main effect of the x axis variable.

2.3. Generated knowledge

Several declarative knowledge structures are also generated during com-
prehension. The first is a set of related chunks that represent each variable,
the levels associated with it, and the identifiers of each level. A graphical
representation of such a structure that combines seven knowledge chunks to
represent the legend variable of Figure 1b is shown in Figure 2.

Three other knowledge structures are generated as graph and interpretive
information is accumulated and associated during comprehension. The cur-
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rent expert model contains all the prior interpretive knowledge described in
the previous section so that each knowledge structure generated combines a
qualitative description of the elements being analysed or compared together
with a complete and accurate interpretation. The information in these struc-
tures is then output in a form that may then be compared to verbal protocols
produced by human experts.

For example, one knowledge structure represents the interpretation of an
individual variable level (e.g., the Compact level of the Plant Density variable
in Figure 1b). The information combined in this structure can then produce
symbolic output equivalent to the statement: “The difference between the
two values for compact plant density is very large so there is a very large
simple effect of high plant density”.

A second knowledge structure records the comparison of two levels of one
variable (e.g., the levels of the Hormone Supplement variable in Figure 1a)
to produce output comparable to the statement: “There is a large difference
between the hormone supplement levels; GCE generally resulted in greater
chick weight than MPE, which indicates a large main effect of hormone sup-
plement”.

The third knowledge structure represents a comparison of the lengths
and point ordering of two levels (e.g., the levels of the Fasting variable in
Figure 1c) which can be used to produce output that can be translated as:
“Although the effect size of the fasting levels is the same, the direction of
their effects is different, indicating a crossover interaction between the two
independent variables”.

Finally, a knowledge structure is produced when two plot points are com-
pared without any further interpretation (e.g., high nitrogen level in Fig-
ure 1b). Information in this structure can be used to produce output that
can be translated as: “When nitrogen level is high, maize yield is much
greater for compact plants than for sparse plants”.

2.4. The comprehension process

Appendix B contains an output trace produced by the model as it carries
out the comprehension task using the graph in Figure 1c, with each line in
the trace representing one step in the process1. Text in square brackets is

1A video of the model interpreting all eight graphs from the expert study (Peebles &
Ali, in preparation) can be viewed at http://youtu.be/qYY No0i1Hc

10



information currently being processed that has either been obtained from the
graph or retrieved from declarative memory.

Numbers in square brackets (e.g., in lines 28 and 33) represent the per-
ceptual difference between two objects in the display which are subsequently
translated into qualitative size judgements (e.g., lines 29 and 33) according
to the categories described above. Other text in the output is simply to indi-
cate other events (e.g., goal setting or memory retrieval failures) or to clarify
to human readers what a particular knowledge element represents.

As previously intimated, the model assumes that comprehension proceeds
after an initial phase of variable identification; a process usually initiated by
reading the title (lines 1–4). Currently when the model reads the title the
three words that name variables are identified by retrieving previously defined
word category information from declarative memory. This mechanism is un-
doubtedly simplistic and currently substitutes for a more complex knowledge
retrieval process that is assumed to take place.

The model then seeks items of text at the left (lines 5–6), lower (lines
7–13), and right (lines 14–18) regions of the display. When each variable
label is located, the model identifies it as a particular type according to its
location and then associates the independent variables with their level labels
by identifying nearby text. The model also associates each of the four levels
with its physical attribute; left, right, blue and green, and uses these labels
when processing the graph. This is consistent with verbal protocol and eye
movement data from our studies showing that graph readers often produce
an interpretation and then must re-read the appropriate label in order to
identify which particular level is being processed.

When the three variables have been processed, the model attends the
central region of the display and processes the pattern produced by the four
coordinate points in the plot region (line 26).

The model represents the interpretation process by a set of production
rules for the various patterns and features in the graph. When the appropri-
ate condition occurs (i.e., the model is directing attention to the plot region),
individual production rules fire to draw attention to specific indicators. The
indicator (a spatial distance, difference or order comparison), is extracted
from the pattern and (together with information about what the indicator
is) used to probe declarative memory for an interpretation consisting of the
name and size of the effect. For example on line 39 of the trace the model
identifies that there is 0.8 difference between the plot points at either end
of the blue line (i.e., the gap between them is 0.8 of the y axis) and then
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retrieves the knowledge that this indicates a very large simple effect of the
Yes level of the Relaxation Training variable.

Once a recognition production rule fires to initiate the process, a chain of
subsequent productions is triggered which obtains further information from
the graph and declarative memory until an interpretation is produced. If a
memory retrieval attempt fails, the model simply describes the feature being
attended to (behaviour observed quite often in novices) but in the current
expert model, such retrieval failures do not occur.

To capture the rapid pattern recognition behaviour of experts observed
and described above the model contains six productions, one for each pattern
type, which fire and initiate an interpretive sequence when a pattern is iden-
tified. Two such patterns are present in the example protocol. The first one
recognised is the crossed lines (lines 27–31) which leads to the identification
of a crossover interaction (line 29). The second pattern is the substantial
difference between the x axis levels (lines 32–37) which leads to the identifi-
cation of a main effect of the x axis variable (line 37).

Once the patterns have been processed (or if there are no such patterns
in the graph), the model samples the display region for further features that
may indicate other important relationships. This is shown in lines 38–43
of the trace where the model identifies the simple effects of the two legend
variable levels but that there is no main effect of the legend variable.

Comparing the expert verbal protocol and the listing in Appendix B, one
can identify the equivalence between the global structure and information
content of the expert and model outputs. The expert’s reading of the title
(line 1) and identification of the x axis (line 2) and legend (line 3) variables
are captured in lines 1–4, 7–13, and 14–18 respectively of the model output.
The key elements of the interpretation are also very similar. The large and
salient main effect of the x axis variable is identified in lines 4–7 of the expert
protocol and lines 32–37 of the model protocol. The interaction is also rapidly
identified by both expert (line 9) and model (lines 27–31) and both also note
the relatively minor effect of the legend variable (line 8 in the expert protocol
and lines 38–43 in the model output).

3. Discussion

Comprehending and reasoning with graphs requires a wide range of per-
ceptual and cognitive operations sequenced together in various combinations
to perform specific tasks. The type and sequence of operators involved in
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a task may differ depending on a number of factors, including the graph or
domain knowledge of the user, the type of graph being used, or individual
cognitive factors such as working memory capacity (which may determine
the relative frequency of memory retrieval requests and saccades to graph
labels etc.).

Graph comprehension is an important area to study therefore because
it provides an opportunity to investigate how environmental and internal
factors interact to produce behaviour. In addition, graph-based tasks can be
analysed using behavioural measures such as eye movements and concurrent
verbal protocols to provide insights into what and when information is being
processed during the course of the activity.

Computational modelling is a valuable tool for developing and testing
hypotheses about the representations and mechanisms necessary for cognitive
tasks as it provides a formalism for characterising them, requires one to be
explicit about the boundaries of one’s model in terms of which processes
are being defined precisely and which are not, and allows one to explore the
consequences of particular assumptions (McClelland, 2009).

Developing models within a cognitive architecture such as ACT-R pro-
vides the additional benefit of allowing the model to incorporate a large
number of assumptions regarding issues such as knowledge representation,
cognitive control, visual attention, learning and forgetting etc., all of which
are supported by previous empirical research. In addition, ACT-R’s vision
module includes mechanisms that allow models to simulate certain Gestalt
principles of perceptual organisation, which are regarded as playing a cru-
cial role in the visual processing of graphical representations (Kosslyn, 1989;
Pinker, 1990). Specifically, the comprehension model associates variables
and their levels, and levels with their colour identifiers using mechanisms
that are functionally equivalent to the Gestalt laws of proximity and simi-
larity respectively.

The model described above represents an initial attempt to specify at a
detailed algorithmic level the representations, cognitive processes, and strate-
gies involved in comprehending interaction graphs. It provides a precise ac-
count of the graph knowledge required and the spatial information necessary
to interpret the graph accurately and specifies a control structure that deter-
mines the flow of information during the task to generate a set of knowledge
representations, saccades and fixations over the graph, and a sequence of
output statements which are largely consistent in terms of order, function
and content with verbal protocols produced by expert users.
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The assumptions of the model imply that to interpret interaction graphs
accurately, novices must acquire three forms of graph-specific knowledge: an
understanding of what effects the different distances and spatial differences
in the graph indicate, the relationship between distance and effect size, and
how the various combinations of distance differences and point orders can be
interpreted in terms of the interactions between the IVs. The model provides
a precise specification of the relatively small amount of knowledge required
and a clear demonstration of its sufficiency to interpret the graphs.

Previous studies have shown that comprehension performance varies widely,
even between experienced users (Peebles & Ali, 2009; Ali & Peebles, in press;
Peebles & Ali, in preparation). For example, the order in which effects are
identified varies, either due to the effects of particular Gestalt principles of
perceptual organisation (Ali & Peebles, in press), as a result of experts’ famil-
iarity with common patterns, or the relative visual salience of the graphical
features being displayed (e.g., very large main effects). In addition to the
core interpretative knowledge therefore, the current model also incorporates
explicit pattern recognition rules to account for the speed and sequential
order of expert interpretations.

Previous studies have also compared expert and novice performance on
both bar and line graph formats and showed that the interpretations of all
users (but novices in particular) were affected by the format used. Specifi-
cally, line graphs users are influenced to attend to the legend variable while
bar graph users attend to the two IVs more equally (Peebles & Ali, 2009; Ali
& Peebles, in press; Peebles & Ali, in preparation). Broadening the scope of
the model further, other factors such as domain knowledge and the number
of variable levels (Shah & Freedman, 2011) should also be addressed.

The current production set is sufficient to process any 2 × 2 data set of
three variables to produce an appropriate interpretation similar to the trace
in Appendix B. The model therefore provides a solid basis from which to
explore hypotheses concerning the mechanisms underlying a broader range
of behaviour. These hypotheses will take the form of enhanced or reduced
declarative graph or domain knowledge, additional recognition productions,
and mechanisms to represent visual salience. A more comprehensive model
must also bring ACT-R’s subsymbolic mechanisms that govern memory re-
tention, retrieval, and learning processes into play as these no doubt have a
significant effect on strategy choice and eye movement patterns (Peebles &
Cheng, 2003).

Finally, the current model does not attempt to provide a detailed ac-
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count of the perceptual processes by which spatial information is encoded or
represented during the execution of elementary perceptual tasks. There are
currently several attempts to develop mechanisms for spatial representation
and processing within cognitive architectures—including ACT-R—however
(a number of which are presented in (Gunzelmann, 2011)) and it may be
possible for the current functions to be replaced in a future model by ones
more conforming with theory and empirical evidence.

Beyond the goal of developing the model to account for the full range of
observed behaviour with an increasing number of interaction graph formats,
lies the larger aim of constructing a model of comprehension for a broader
class of graphs. As discussed earlier, interaction graphs embody a specific
set of interpretive rules that are not shared by other graphs. The current
model clearly identifies and characterises these rules and distinguishes them
from the knowledge and procedures that can be applied to other graphs. It is
hoped that in so doing, the model will simplify the task of identifying graph-
specific operators and form a basis upon which to develop and explore a range
of graph comprehension models for other graphical formats. As it stands
however, the model provides a valuable demonstration that the assumptions
it currently embodies are sufficient to produce an expert interpretation of
the relationships depicted in 2 × 2 interaction graphs.
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3.1. Appendix A: Model output for the graph in Figure 1c

1 seek text at top of display. . .
2 [glucose-uptake] [= variable]
3 [as] [a] [function] [of] [fasting] [= variable]
4 [and] [relaxation-training] [= variable]
5 seek text at far left of display. . .
6 [glucose-uptake] at [far-left] is the [dependent] variable
7 seek text at bottom of display. . .
8 [fasting] at [bottom] is the [independent] variable
9 look to nearest text. . .

10 [low] is a level of [fasting]
11 [low] is [right]
12 [high] is a level of [fasting]
13 [high] is [left]
14 seek text at far right of display. . .
15 [relaxation-training] at [far-right] is the [independent] variable
16 look to nearest text. . .
17 [yes] is a level of [relaxation-training]
18 [no] is a level of [relaxation-training]
19 seek objects in plot region. . .
20 a [blue] [line]
21 no associate for [blue] so look to legend. . .
22 found [blue] [rectangle]. looking for nearest text. . .
23 [blue] represents [yes]
24 found [green] [rectangle]. looking for nearest text. . .
25 [green] represents [no]
26 variables identified. look to plot region. . .
27 pattern: values reversed for x axis levels. . .
28 [0.0] difference in distance between points. [neither] bigger
29 [no] difference and [different] point order = [crossover-interaction]
30 for [low] [fasting] [no] [relaxation-training] greater than [yes] [relaxation-training]
31 for [high] [fasting] [yes] [relaxation-training] greater than [no] [relaxation-training]
32 pattern: substantial difference between x axis levels. . .
33 [0.1] difference [left] = [very-small] [simple] effect [high] [fasting]
34 [0.1] difference [right] = [very-small] [simple] effect [low] [fasting]
35 compare [left] and [right] levels. . .
36 [large] difference. [high] [fasting] greater than [low] [fasting]
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37 [large] [main] effect of [fasting]
38 identify legend levels. . .
39 [0.8] difference [blue] = [very-large] [simple] effect [yes] [relaxation-training]
40 [0.6] difference [green] = [large] [simple] effect [no] [relaxation-training]
41 compare [blue] and [green] levels. . .
42 [no] difference. both levels of [relaxation-training] are the same
43 [no] [main] effect of [relaxation-training]
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